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AbstractAbstract

Battery-operated portable devices, e.g., cell phones, pagers, 
PDAs demand energy-efficient linear power amplifiers (PAs):

Increases  battery life 
Decreases cost (e.g., smaller heat sinks, less PCB real estate)

PA efficiency is enhanced by dynamically changing both the bias 
current and supply voltage, on-the-fly:
⇒ Dynamically adaptive DC-DC converter

The required PA supply voltage at any time can be higher or 
lower than the battery voltage  (Li-ion: 2.7-4.2 V):
⇒ Non-inverting, buck-boost converter

Experimental results of a prototype PA:
Meets CDMA IS-95 ACPR requirements with 27 dBm maximum output power.

Five times increase in battery life.
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CDMA PA RequirementsCDMA PA Requirements

Large peak to average ratio.
→ PA designed for the peaks will be 

inefficient at the valleys.

→ Intuitively, goal should be to 
maintain high efficiency throughout.

⇒ Control the operation of the PA by 
following the envelope for all power 
levels.

Power control is essential to CDMA 
systems.
Maximum use with output power of 
about 5 dBm. 

PA designed for peak power is 
inefficient at back-off.
Optimize in the vicinity of the peak.

For longer battery life, PA must be 
efficient across wide loading 
conditions.

CDMA Signal

PA output power distribution profile
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PowerPower--Tracking, Efficient Linear PATracking, Efficient Linear PA
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Why power-tracking?
It requires smaller converter bandwidth, therefore lower switching frequency, 
hence incurs lower switching losses which extends battery life.

Operation
The RF signal is split between the PA and the power detector via the 
directional coupler.

The detector generates a DC voltage proportional to the RF power.
Control signal for the converter which defines the PA supply voltage and bias 
current.

As input power varies, the converter control signal changes, ultimately 
adjusting the PA supply voltage and bias current.
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Prototype System ImplementationPrototype System Implementation
Discrete non-inverting, synchronous, buck-boost converter.

Branch-line, micro-strip, directional coupler: 5 dB coupling coefficient.

Commercial RF power detector: LTC 5505-2.

RF PA evaluation module: NEC 55020279A LDMOS Transistor.

Single ended Class-A Amplifier

Class AB and B  modes of operation are not linear enough to meet the ACPR 
requirements for CDMA. 

ACPR performance of class AB experimental PA is found to be 5 dB greater than 
the desired value (-40 dBc).

Maximum efficiency (with desired linearity) is achieved by operating the PA on the 
boundary of class A and AB.

Dynamic gate bias generation circuit
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NonNon--inverting Buckinverting Buck--Boost ConverterBoost Converter
Converter Design Considerations:

Small output ripple to reduce PA output distortion.

Fast response to track power change.

High efficiency to increase battery life.
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Salient Features:
Type–III network (three poles and two 
zeros) for compensation.
Dead-time control scheme to prevent 
shoot-through current.
Duty-cycle is limited to less than unity 
to prevent catastrophic failure (shorting 
Vin to ground via MP1, MN1 and L).
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Experimental Results Experimental Results –– ConverterConverter
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Efficiency for Various Output Voltages

⇒ Most of the output ripple is due to the ESR 
of the output capacitor.

Reduce ESR to decrease the output ripple.

⇒ Efficiency can be further improved with
Switches of lower ON resistance.

Advanced dead-time control techniques.

Zero-voltage switching during light loads.

Inductor current

Buck
PMOSGATE

Buck 
NMOSGATE

Dead-Time Control

Output ripple

Vph1

Inductor current

Converter Waveforms

Vpp = 50 mV
IL_pp = 1 A

Functionality
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Experimental Results Experimental Results –– ConverterConverter

Summary of prototype converter results
Converter 

control 
signal

Converter’s 
output

Response 
time ≈300 
µsec

Response 
time ≈200 
µsec

Load step 0-0.5 A

Converter’s 
output

⇒ Converter responds to worst-case control reference 
within 300 µsec

⇒ Converter responds to a load step of 0-0.5 A within 200 
µsec having only 40 mV transient error in the output 
voltage

Specifications Target Expt.

Input voltage 2.4-3.5 V 2.4-3.5 V

Output voltage 0.4-4.0 V 0.4-4.0 V

Output voltage accuracy – 0.5–3 %

LNR (2.4–3.4 V) – ≤ 0.3 %

LDR (0.05–0.6 A) – ≤ –1.0 %

Worst case control step ≤ 300 µsec ≤ 300 µsec

Response to load step ≤ 300 µsec ≤ 200 µsec

Efficiency – 10-62 %

Peak-to-peak ripple ≤ 100 mV ≤ 100 mV

⇒ The error in low output voltages is due to the PCB parasitic resistance, offset voltage of the error amplifier 
and finite loop-gain of the feedback loop.

Response to a Load Step

Response to a Worst-Case Control Step
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Experimental Results Experimental Results –– PA SystemPA System
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Gain degradation is marginal with 
dynamic supply

ACPR degradation is marginal for the dynamic 
supply PA with respect to the fixed-supply PA Converter responds within 200 µsec

ACPR: Measure of CDMA PA Linearity
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ACPR is defined as the ratio of adjacent channel power to the 
main channel power:  ACPR1 = P1/P0, ACPR2 = P2/P0.

Gain Plot

ACPR  Plot

Response to Worst-Case Power Adjustment
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Experimental Results Experimental Results –– PA SystemPA System
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⇒ Peak efficiencies  of 
fixed-supply and 
dynamic-supply PA are 
29 and 27.5 %, 
respectively.

⇒ At lower output power, 
the dynamic-supply PA 
operates with a reduced 
voltage and current, 
thereby decreasing  the 
input power and 
consequently increases 
efficiency.

⇒ Further improvement in 
efficiency can be 
accomplished by 
increasing converter’s 
efficiency and dynamic 
range of the power 
detector.

Input Power Plot
Weighted Input Power Plot

Efficiency Plot Weighted Efficiency Plot
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Fixed-Supply PA

Battery’s low, Plug it back up!

ConclusionsConclusions

Improvement in the average efficiency directly translates into five times 
increase in battery life.

Power-tracking scheme requires a lower switching frequency converter.
⇒ Increased light load efficient, thereby longer battery life.

Non-inverting, buck-boost converter is needed to operate the system at 
its peak performance independent of the battery state –freshly charged 
to close to fully-discharged condition–.

Future Work: Monolithic solution of the efficient linear power amplifier 
system targeted for single-cell NiMH/NiCd battery (0.9 –1.8 V).

2.2 % 11.2 %AlGaAs/InGaAs PA with buck-converter

3.89 % 6.38 %GaAs HBT PA with boost converter

1.74 % 8.67 %LDMOS PA with buck-boost converter*

ηfixed_supplySchemes ηdyn_supply

Efficiency improvement comparison

*This work

Dynamic-Supply PA

Let’s talk!


