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Abstract

Portable, single-cell battery devices use switching regulators to 
convert the battery voltage to required subsystem’s voltage levels, 
efficiently. For various reasons, switching regulators demand 
information about the inductor current. Available current-sensing 
techniques are not both lossless and accurate at the same time. To 
address this issue, a current-sensing scheme is proposed that is 
lossless,  accurate, and suitable for integrated solutions. A 
prototype of the system is under progress, and preliminary results 
verify the design concept. 
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Review of The Problem

• Why current-sensing?
- Over-current protection
- Current-mode control
- Mode hopping (A technique to obtain high 
efficiency at all loads)

- Current sharing

• Why not the conventional way of current sensing 
(resistor in the path of the current to be sensed)?
- High power dissipation in the sense resistor
- Degradation of efficiency (Not lossless)

• Why not other lossless techniques?
- Not accurate
- Dependent on off-chip elements 
- Not suitable for integrated solutions
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• Proposed system uses a first-order low pass Gm-C filter to imitate the 
inductor behavior.

• The Gm-C filter input is the voltage across the inductor.
• If the cutoff frequency of the Gm-C low-pass filter is equal to the cutoff frequency 

of the inductor  (caused by L and RL ), the Gm-C filter output  is proportional to 
the inductor current.

• The proposed system operation consists of three stages:
1- Tuning (during startup)
2- Calibration (during startup)
3- Normal operation

Proposed System at a Glance
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Normal Operation
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IF the Gm-C filter matches the inductor  
characteristic, the output sense voltage 
estimates the inductor current accurately.
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Normal Operation Experimental 
Results

Estimated current (Vsense) versus output ripple for different load currents

• Since the capacitor ESR is high (in the prototyped DC-DC converter), the output 
voltage ripple is proportional to the inductor current (∆Vout=RESRIL).

1: Output voltage ripple α ∆I                                   2: Proposed system output (estimated current)

Iload=0.032A (DCM) Iload=0.1A (DCM)

Iload=0.5A (CCM) Iload=1A (CCM)
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Tuning
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• Loop forces  equal phases for Vsense and V1.

• Tuning range is determined by Gm2.

The phase difference between V1 and 
V5 varies by changing the Gm2 bias 
current. Phase difference for (a). 
Gm2min, and (b). Gm2max. V1 is a 
sinusoidal signal with magnitude of 2 
Vpp, and frequency of 500Hz.

(a)

(b)

(Tuning wave forms)
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Calibration

Calibration process adjusts the low-
frequency gain.

Calibration: 
Vsense= Vc → Iref.RL.k.Gm1/Gm2 = Vc

Normal operation:
Vsense = ILRLGm1/Gm2

= ILVc/(kIref)

IF Vc/(kIref)=1 → Vsense=1Ω×IL

Problem:
The Gm1 offset depends on the bias current → Simple offset cancellation
does not work → More advanced, dynamic offset cancellation is required. 
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Closed-Loop Offset 
Cancellation Technique[1]

C

[1] C. Enz and G. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, 
and chopper stabilization,” Proceedings of IEEE, Vol.84, 1996, pp. 1584-1614.

Offset is cancelled by the additional   
current provided by Gm3.

• During φ1
- Compensation loop is closed.
- Input voltage is zero.
- Output voltage is set to zero by the

Gm3 output current.

• During φ2
- Compensation loop is opened.
- Circuit performs its normal operation.

• Problem:
Operation is not continuous

• Solution:
Ping-pong configuration can be used.
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Ping-Pong[2] Operation
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Using  two of the previous circuits in parallel, the 
operation becomes continuous. While one of the 
circuits works in the normal operation, the other one 
adjusts and cancels its offset.   

• Two matched gm-C filter sets are  used.

• Each gm-C set uses a closed loop offset
cancellation.

• During φ1:
- Sub-circuit (I)  cancels its offset.
- Sub-circuit (II) filters the input signal.

• During φ2:
- Sub-circuit (I) filters the input signal.
- Sub-circuit (II) cancels its offset.

[2] Y. Chong-Gun Yu and R. Geiger, “An automatic offset compensation scheme with ping-pong control for CMOS operational amplifiers,” 
IEEE Journal of Solid-State Circuits, Vol. 29, 1994, pp. 601-610.
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Conclusions and Future Work

• Conclusions:
- Concept works 
- Problem with calibration

• Future work:
- Completion of the prototype system
- Integration of the circuit
- Addition to a low-voltage boost converter for control, and 
mode hopping


