

Review of The Problem

- Proposed system uses a first-order low pass Gm-C filter to imitate the inductor behavior.
- The Gm-C filter input is the voltage across the inductor.
- If the cutoff frequency of the Gm-C low-pass filter is equal to the cutoff frequency of the inductor (caused by L and R_L), the Gm-C filter output is proportional to the inductor current.
- The proposed system operation consists of three stages:
 - 1- Tuning (during startup)
 - 2- Calibration (during startup)
 - 3- Normal operation

H.P. Forghani-zadeh

4

Normal Operation

IF the Gm-C filter matches the inductor characteristic, the output sense voltage estimates the inductor current accurately.

• Since the capacitor ESR is high (in the prototyped DC-DC converter), the output voltage ripple is proportional to the inductor current ($\Delta V_{out}=R_{ESR}I_L$).

 $V_{\text{sense}}(i_L)$

Calibration

Calibration process adjusts the low-frequency gain.

Calibration: $V_{sense} = V_c \rightarrow I_{ref}.R_L.k.Gm1/Gm2 = V_c$

Normal operation: $V_{sense} = I_L R_L Gm1/Gm2$ $= I_L V_c/(kI_{ref})$

$$(\text{IF V}_{c}/(k\text{I}_{ref})=1 \rightarrow \text{V}_{sense}=1\Omega \times \text{I}_{L}$$

Problem:

Georgia

The Gm1 offset depends on the bias current \rightarrow Simple offset cancellation does not work \rightarrow More advanced, dynamic offset cancellation is required.

Closed-Loop Offset Cancellation Technique^[1]

φ1

Gm3

Gm

compensation loop

Gm²

φ2

Vo

9

Offset

 C_{h}

ω2

ω1

V_{in}

Offset is cancelled by the additional current provided by Gm3.

- During φ1
 - Compensation loop is closed.
 - Input voltage is zero.
 - Output voltage is set to zero by the Gm3 output current.
- During φ2
 - Compensation loop is opened.
 - Circuit performs its normal operation.
- Problem:

Operation is not continuous

Solution:

Ping-pong configuration can be used.

 C. Enz and G. Temes, "Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization," Proceedings of IEEE, Vol.84, 1996, pp. 1584-1614.

H.P. Forghani-zadeh

Ping-Pong^[2] **Operation**

Using two of the previous circuits in parallel, the operation becomes continuous. While one of the circuits works in the normal operation, the other one adjusts and cancels its offset.

- Two matched gm-C filter sets are used.
- Each gm-C set uses a closed loop offset cancellation.
- During φ1:
 - Sub-circuit (I) cancels its offset.
 - Sub-circuit (II) filters the input signal.
- During φ2:
 - Sub-circuit (I) filters the input signal.
 - Sub-circuit (II) cancels its offset.

[2] Y. Chong-Gun Yu and R. Geiger, "An automatic offset compensation scheme with ping-pong control for CMOS operational amplifiers," IEEE Journal of Solid-State Circuits, Vol. 29, 1994, pp. 601-610. *H.P. Forghani-zadeh*

