# An Integrated, Dynamically Adaptive Energy-Management Framework for Linear RF Power Amplifiers

Georgia Tech Analog Consortium

### **Biranchinath Sahu**

### Advisor: Prof. Gabriel A. Rincón-Mora

### Georgia Tech Analog and Power IC Design Laboratory School of Electrical and Computer Engineering Georgia Institute of Technology

GEDC Industry Advisory Board, April 2004. © 2004 Georgia Electronic Design Center. All Rights Reserved. Redistribution for profit prohibited.



### Abstract

- Energy-efficient, linear RF power amplifiers are *critical* and *paramount* to achieve *longer battery life* in state-of-the-art wireless handsets.
- In the proposed system, the energy-efficiency of a PA is improved by dynamically adjusting the supply voltage and current as a function of its transmitted power.
- System Requirements
  - ✓ High efficiency  $\Rightarrow$  Improvement in battery life
  - ✓ Low voltage  $\Rightarrow$  Single cell operation (*Li-ion*/NiCd/NiMH/*Fuel Cell*)
  - ✓ Integrated  $\Rightarrow \downarrow$  External components,  $\downarrow$  Cost
  - ✓ Low noise  $\Rightarrow \downarrow$  Interference
- This work addresses the design challenges and trade-offs involved in realizing an integrated circuit (IC) for such a system with a *wide range* of supply voltage.
  - Lower limit Minimum supply voltage for circuits to be operational (1.4 V)
  - Higher limit Process technology constraints (5 V), AMI 0.5 μm CMOS

GEDC Industry Advisory Board, April 2004. © 2004 Georgia Electronic Design Center. All Rights Reserved. Redistribution for profit prohibited.

GEDC

# **Energy-Efficient Linear PA**



GEDC Industry Advisory Board, April 2004. <u>**The System**</u> © 2004 Georgia Electronic Design Center. All Rights Reserved. Redistribution for profit prohibited.

GEDC

# **The System – An Integrated Solution**







### **Dynamic Gate Bias Circuit**



GEDC Industry Advisory Board, April 2004. © 2004 Georgia Electronic Design Center. All Rights Reserved. Redistribution for profit prohibited.

GEDC

## **Buck-Boost Converter – PWM Mode**



## **Buck-Boost Converter – PFM Mode**



# **The Building Blocks**

### Error amplifier Op-amp

### Input common-mode range (ICMR)

- By dynamically shifting the input signal as a function of supply voltage, a PMOS input stage is used.
- $\Rightarrow$  ICMR  $\uparrow$ , Noise  $\uparrow$ , Offset voltage  $\uparrow$

### Input Offset Voltage

- Error in output voltage = Offset voltage × Closed loop gain of the converter.
- Depending on the accuracy requirement, offset cancellation techniques can be used.
- DC Gain and Bandwidth
  - As DC gain  $\uparrow$ , steady-state error  $\downarrow$
  - UGF<sub>OPAMP</sub> >> Loop BW<sub>CONVERTER</sub>
- Architecture similar to the dynamic bias circuit

### **Bandgap reference**

- $|_{\text{REF}} = |_{\text{PTAT}} + |_{\text{CTAT}}$
- $V_{REF} = I_{REF}R$

Substrate vertical PNPs as diodes





### **The Building Blocks**

#### **Triangular Wave Generator**



Spread spectrum triangular wave by adjusting the charging/discharging current dynamically

#### Potential reduction in EMI and noise

#### Performance Summary of the Converter

| Specifications              | Target            | Sims.            |
|-----------------------------|-------------------|------------------|
| Input voltage (V)           | 1.4 – 4.2         | 1.4 – 4.2        |
| Voltage mode PWM controller |                   |                  |
| Output voltage (V)          | 0.5 – 5           | 0.5 – 5          |
| Peak-to-peak ripple (mV)    | ≤ 10 <b>–</b> 100 | ≤ <b>2 – 4</b> 7 |
| Efficiency (%)              | -                 | 60-97 %          |
| Quiescent current (mA)      | -                 | 1                |
| PFM controller              |                   |                  |
| Output voltage (V)          | 0.5               | 0.5 – 0.51       |
| Peak-to-peak ripple (mV)    | ≤ 50              | <b>≤20 – 36</b>  |
| Efficiency (%)              | -                 | 50 – 84 %        |
| Quiescent current (μA)      | -                 | 200              |





## Layout of the System



#### **System Floor Plan**

### **System Layout**

Layout size: 3.5 mm  $\times$  3.3 mm – Power transistor area more than 75 % Targeted Package: LCC 44 – Design for Testability

GEDC Industry Advisory Board, April 2004. © 2004 Georgia Electronic Design Center. All Rights Reserved. Redistribution for profit prohibited.



# Summary

- IC design issues of key building blocks of a new energy-management system for linear RF PA is discussed. Key challenges with respect to implementation of low-voltage circuits are addressed.
- System Efficiency Enhancement
  - Nominal voltage and current at peak PA output power
  - Reduced supply and current as PA output power reduces
- Buck-Boost Converter Performance Enhancement
  - PWM Mode at full/mode load, PFM Mode at light load
  - Buck/Buck-Boost/Boost Mode of operation
  - DC accuracy ⇒ Low –offset, wide input common-mode range opamp for error amplifier
  - Ripple voltage/Noise spectrum 
     Spread-spectrum clocking
  - Transient accuracy  $\Rightarrow$  Higher bandwidth, slew rate
- Future Work: Performance evaluation of the IC

