Self-stabilizing, Hysteretic Boost DC-DC Converter for Portable Applications

Neeraj Keskar Advisor: Prof. Gabriel A. Rincón-Mora

Georgia Tech Analog Consortium Review

Analog and Power IC Design Lab School of Electrical and Computer Engineering Georgia Institute of Technology April, 2004

GEDC Industry Advisory Board, April 2004. © 2004 Georgia Electronic Design Center. All Rights Reserved. Redistribution for profit prohibited.

Neeraj Keskar

Motivation

- Significant dependence of converter frequency response on passive components
- Tolerances in capacitor ESR, ESL values
- Variations in inductor, capacitor values per design
- IC solution for frequency compensation required because
 - Reduction in design time
 - Reduction in part count
 - Reduction in board size, cost
 - Ease of design
- Need to have IC solution that will give frequency compensation independent of external components

Various techniques in literature were studied

Comparison of Stabilizing Techniques

	Masking LCR ((and/or ESR) I	Parameters	RHP Zero Elimination		Adaptive control		Boundary control
Characteristic	Feedforward	Modified Hysteretic	Constant LCR load	Constant capacitor discharge	Output peak control	Multiple operating point	Digital control	Voltage hysteretic control
Complexity	Medium	Low	Highest	Medium	Medium	High	High	Lowest
Response	Slowest	Fast	Medium	Medium	Slow	Slow	Slow	Fastest
Power losses	Low	Medium	Low	Highest	Low	Low	Low	Low
Output ripple	Low	Lowest	Low	Low	High	Low	Low	Low
Stable – LCR variation	Medium	Highest	High	Low	Lowest	High	High	High
Versatility	High	Low	Low	Low	Low	High	Highest	Medium

<u>Conclusion</u>

Hysteretic control based scheme to be extended to boost converter

Issues with Hysteretic Control in Boost Converters

Buck	converter	Boost converter				
 Inductor cu with output <u>Therefore:</u> Current mo Single pole Stable oper 	rrent ripple <i>in phase</i> voltage ripple – <i>de control</i> <i>transfer function</i>	 Inductor current ripple <i>out</i> <i>of phase</i> with output voltage <u>Therefore:</u> <i>No current mode control</i> <i>Double pole + RHP zero</i> <i>Unstable operation</i> 				
V _{IN}	> V _{OUT} > 0	$V_{OUT} > V_{IN} > 0$				
In steady-state	e, D ₁ rises:- V _{OUT} rises	In steady-state, D ₁ rises:- V _{OUT} rises				
& S ₁ or	n:- V _{OUT} rises	but S ₁ on:- V _{OUT} falls				
Neeraj Keskar	GEDC Industry Advisory Board, April 2004.					

Redistribution for profit prohibited.

Hysteretic Control in Boost Converters: Proposed Concept

For $I_{CS} > I_{O(desired)}$

- With switch S open, $V_{OUT (EQL)} = (I_{CS})(R_{OUT}) > V_{O(desired)}$
- With switch S closed, $V_{OUT (EQL)} = 0$

Now, $0 \le V_{OUT} \le (I_{CS})(R_{OUT})$ A > V_{OUT} hysteretically regulated by controlling duty cycle D_A

Neeraj Keskar

GEDC Industry Advisory Board, April 2004. © 2004 Georgia Electronic Design Center. All Rights Reserved. Redistribution for profit prohibited. GEDC

Hysteretic Control in Boost Converters: Implementation 1

- Fixed $I_{REF} \ge I_{LMIN} = I_{OMAX} / (1-D_M)$
- ✓ Very fast transient response
- ✓ Stable operation without frequency compensation circuits
- × Poor efficiency especially at light loads

GEDC

Neeraj Keskar

Hysteretic Control in Boost Converters: v_{N-T} Implementation 2

- Dynamic current reference based on duty cycle D_A
- \bullet Use a D_A to V_{IREF} demodulator
- If $D_{A\uparrow}$ (I_L higher than required), then V_{IREF} (I_L decreases)
- \checkmark I_L set only 5% higher than I_O/(1-D_M)
- ✓ Improved power efficiency

Neeraj Keskar

Steady-state Simulations

Specs: $V_{IN} = 1.5 V$, $V_{OUT} = 3.3 V \pm 5\%$, $I_{OUT} = 0.1 - 1 A$

- I_L free-wheels during on-time of switch S_A
- \bullet Switching f_{SW} of $S_A << f_{SW}$ of S_M
- \bullet Steady-state duty cycle $D_A \sim 5\%$

 \checkmark V_{OUT} = 3.3 V ± 35mV

GEDC Industry Advisory Board, April 2004. © 2004 Georgia Electronic Design Center. All Rights Reserved. Redistribution for profit prohibited.

Neeraj Keskar

Simulated Power Efficiency

- Proposed solution has slightly lower efficiency (up to 2 % @ 1 A) compared to standard boost converter
- \checkmark At light loads, the efficiencies are comparable
- \checkmark At \sim 20 mA load, the efficiencies equal each other

Neeraj Keskar

Summary

- Techniques to ease stability requirements in DC-DC converters reviewed
- Hysteretic control in buck converters fastest, simple and w/o compensation
- Voltage-mode hysteretic control not been used so far in boost converters
- Novel technique presented to implement hysteretic control in boost converters
- Proposed method can be used with good regulation (3.3 V \pm 5%) and fast transient response without using any compensation circuit
- Efficiency degraded up to 2 % @ 1 A, but < 1% at light loads
- Solution can be used towards an increased degree of integration in DC-DC converters – without an external frequency compensation circuit

Neeraj Keskar

GEDC