

An Integrated, Lossless, and Accurate Current-Sensing System for High-Performance DC-DC Converters

H. Pooya Forghani-zadeh Advisor: Prof. Gabriel Rincon-mora Georgia Tech Analog and Power IC Lab Georgia Institute of Technology April 2004

GEDC Industry Advisory Board, April 2004.

Abstract:

Current-sensing circuits are essential for protection and control of the switching regulators. Inserting a resistor in the path of the current to be sensed reduces the converter efficiency by 3-8%. Therefore, lossless current-sensing circuit should be used to meet the efficiency specification of the high-performance converters (more than 90% efficiency at all loads). However, without the knowledge of off-chip elements, lossless current-sensing circuits are not accurate, which would introduce errors in protection, control and efficiency enhancement circuits that use current information. A current-sensing technique that is both lossless and accurate was proposed, which measures the inductor during the start-up. The error sources as well as the methodology for integrated implementation of the technique are discussed in this poster.

Why Current Sensing?

- Over-current protection (especially for lasers and audio AC-DC converters)
- Additional state for converter control- simplifies the compensation (i.e., current-mode and boundary control)
- Mode hopping (A technique to obtain high efficiency at all loads)
- Current sharing (parallel/multi-phase converters)
- Single-inductor multiple-output converters (SIMO) (D. Ma, 2003)

Available Techniques

Technique	Advantages	Disadvantage	
A. R _{SENSE}	Accuracy	High power dissipation	
B. R _{DS}	Lossless	Low accuracy	
C. L _{Filter}	Lossless	Known L and ESR High number of discrete elements	
D. Observer	Lossless	Known L	
E. I _{Average}	Lossless	Known inductor ESR Average inductor current only	
F. Transformer	Lossless	Cost Size Not integrable No I _{DC} information Not practical	
G. Sense-FET	Lossless Integrable Practical	Special MOSFETs (not suitable for off-chip switches) High Switching noise, specially at low duty cycle Accuracy of about ±20%	
H. Hall Effect Sensor	Lossless	Very low sensitivity in standard CMOS (no ferromagnetic material, low bandwidth, no commercial or academic report on DC-DC converters)	

e techniques are not lossless, and lossless teck are not accurate.

Filter Technique Enhancement

Proposed System

Georgialnstitute of **Tech**nology

- Buck converter
- V_{in}=2.7V-5V
- V_{out}=1.8V
- $f_s = 1 MHz$
- $I_{load} > 1A$
- Current-mode PWM Controller
- Current-sensing accuracy <7.5% at full load current over temperature and load current range.

GED

- Inductor range inductance: 2uH-8uH ESR: 25mΩ-100mΩ
- Temperature range: T=-40°C-85°C

Tuning/Calibration

Georgialnstitute of Technology

GEDC Industry Advisory Board, April 2004.

GEDC

Georgialnstitu

Simplified Inductor Model for Power Inductors

R_{ESR} determines the current DC value. L determines the current AC value.

SMT Power Inductors-DO3308 Series

www.coilcraft.com

GEDC Industry Advisory Board, April 2004.

Error Sources

Error source	Nature of error	% Error	Systematic /Random	Predictability ⁽²⁾	Compensation
L vs. Temperature T=-40°C -85°C	200-800ppm/°C ±1.25%-±5%	AC: ±1.25%-±5%	Systematic	Medium	Maybe
$R_{ESR vs. Temperature}$ T=-40 to 85	3900ppm/°C±2%	DC: ±25%	Systematic	High	Yes
L versus I _L	Core saturation	AC: 0-20% DC: 0-4%	Systematic	Low	No, Proper selection of inductor
$R_{ESR \ versus \ IL}^{(1)}$	-	-	-	-	-
R _{ESR vs. frequency}	Parasitic capacitor Skin effect	AC: 0 DC: <1%	Systematic	Medium	No
L versus frequency	1-3% change per decade	AC: <1% DC:0	Systematic	Low	No, Proper tuning

- (1) This effect is considered in R_{ESR} versus temperature.
- (2) Predictability determines how well an IC-designer can predict and compensate the error source at the design time.

Conclusions

- Proposed system uses a first-order low-pass filter to imitate the inductor behavior.
- The filter input is the voltage across the inductor.
- If the cutoff frequency of low-pass filter is equal to the cutoff frequency of the inductor (caused by L and R_L), the filter output is proportional to the inductor current.
- The proposed system operation consists of three stages:
 - 1. Tuning (during startup)
 - 2. Calibration (during startup)
 - 3. Normal operation
- The accuracy of the system is limited by the compensation of inductance changes with environmental parameters (i.e., temperature).

