Prototype Implementation of a High Efficiency, Soft Switching DC-DC Converter with Adaptive Current-Ripple Control

Siyuan Zhou

Advisor: Prof. Gabriel A. Rincón-Mora

GT Analog & Power IC Design Lab School of Electrical and Computer Engineering Georgia Institute of Technology

April 19, 2004

Motivation

Motivation for Improving Efficiency in Mobile Applications

- Portable application
 Compact, low power, low cost, SOC
- Process technology advancement
 Single battery operation
 Low voltage circuits

Research Goal

Improve *power efficiency* of integrated DC-DC converters to *extend battery life* for *portable, battery-powered* applications.

Evaluation of Battery Life

• Battery Life

Battery Life [h] = <u>
Battery Capacity [mAh]</u> Total Average (Weighted) Battery Current [mA]

• Total Average (Weighted) Battery Current, IBatt_Avg_Tot

$$\eta(I_{\text{load}}) = \frac{V_{\text{out}} \times I_{\text{load}}}{V_{\text{Batt}} \times I_{\text{Batt}}} \implies I_{\text{Batt}}(I_{\text{load}}) = \left(\frac{V_{\text{out}}}{V_{\text{Batt}}}\right) \frac{I_{\text{load}}}{\eta(I_{\text{load}})}$$
$$I_{\text{Batt}_{\text{Avg}_{\text{Tot}}}} = \int_{0}^{I_{\text{load}_{\text{max}}}} \left[\text{PDF}(I_{\text{load}}) \times I_{\text{Batt}}(I_{\text{load}}) \right] dI_{\text{load}} = \sum_{i} \underbrace{\text{Probability}(I_{\text{load}}) \times I_{\text{Batt}}(I_{\text{load}})}_{\text{Charge (Energy) drawn from the battery}}$$

Conclusion

- Battery life is highly dependent on the probability distribution (PDF) of the load.
- Improve power efficiency at the load current where the most charge / energy is drawn from the battery, i.e., (Probability×I_{Batt}) is the largest.

Adaptive Current Ripple Control

• Idea

Soft switching + Reduce current ripple to optimize the efficiency !

Operation Modes

- High loads (region I): Constant current ripple, hard switching
- Moderate and light loads (region II & III): Adaptive ripple, Soft switching
- Very light loads (region IV): Constant peak current, hard switching (Burst Mode)

Siyuan Zhou

© 2004 Georgia Electronic Design Center. All Rights Reserved. Redistribution for profit prohibited.

Effect of Power MOSFET Size

Characteristics of Power MOSFET

	ON-Resistance	Input Capacitance
	Conduction Loss	Switching Loss
Big FET	Small	Big
(e.g. IRF 7309)	(e.g. 80 mΩ at 4.5V)	(e.g. 520 pF)
Small FET	Big	Small
(e.g. IRF 7105)	(e.g. 160 mΩ at 4.5V)	(e.g. 330 pF)

Conclusions

- At high loads
 Conduction losses dominate
 Use big FET
- At light loads Switching losses dominate Use small FET
- If power MOSFETs are integrated Dynamic Gate Sizing

Prototype Implementation

Top Level Schematic V_{in} S. V_{ph} V_{out} 0 R S_n C, load $\mathsf{R}_{\mathsf{ESR}}$ V_{fb} R **TPS 56100 Dead Time** -⊙ V_{ref} **Control &** Π **Gate Driver** , R_{Hyst} **Programmable** R_3 Enable **Hysteresis**

Comments

- Assuming output voltage is ESR dominant, voltage-mode hysteretic control is used to adaptively regulate the inductor current ripple.
- Hysteresis is manually adjusted for the minimum current ripple needed for soft switching.

Converter Parameters

 V_{in} = 5V, V_{out} = 1.8V, 0 < I_{load} < 1A L_f = 8.2 μH (20 mΩ ESR), C_f = 47 μF (75 mΩ ESR), C_r = 4.5 nF

Efficiency Performance

Siyuan Zhou

Experimental Results – Battery Life

Stress Test Setup

Load Probability

For DSP, µProcessor Application

Results

Siyuan Zhou

Experimental Results – Other Performance

Switching Frequency and Current Ripple

Load Current (mA)

Transient Response

Conclusion and Future Work

• Conclusion:

- Improve the power efficiency at the load current where the most charge / energy is drawn from the battery, which may not be the highest probability load.
- Adaptive current ripple control in DCM soft switching improves the power efficiency at light and moderate load currents, which significantly increases the battery life.
- Using small power MOSFET at light loads further reduces the switching loss, therefore dynamic gate sizing is beneficial in the integrated solution.

• Future Work:

- Investigate how to sense the load current to automatically adjust the hysteresis.
- Investigate how to determine the mode transition points automatically.
- Investigate how to implement the control strategy with ceramic output capacitors.
- Implement the whole system in an integrated circuit.

Siyuan Zhou