GeorgiaInstitute of **Tech**nology

Frequency Response of Hysteretic Comparators in Switching Converters

Dongwon Kwon and Gabriel A. Rincón-Mora Georgia Tech Analog, Power, and Energy IC Research

March 18, 2010

Abstract

Hysteretic switching dc-dc converters are popular because they are (*i*) relatively simple (i.e., self-oscillating and selfcompensating), (*ii*) fast (i.e., able to respond within one switching cycle: $f_{OdB} = f_{SW}$), and (*iii*) robust (i.e., reliably stable). Although the time-domain operation of a hysteretic comparator can at times be intuitive, its ac transfer response in a switching converter (i.e., gain and phase) is not because linearizing what is already an inherently nonlinear circuit is difficult. This presentation illustrates how to derive a *describing* (rather than *transfer*) *function* that conveys more ac insight and shows how the oscillator circuit ensures there is just enough phase shift across the feedback loop to sustain oscillations (i.e., reach 180° of phase shift at $f_{OdB} = f_{SW}$).

Summary

- Hysteretic switching converter = Oscillator (i.e., f_{sw} = f_{0dB} = f₁₈₀₀);
- AC Response = Large Signal (i.e., loop processes f_{sw} signal);
- LC eliminates higher-than-f_{sw} frequencies
 - \therefore Only comparator's f_{sw} component is relevant.

$$Gain = \frac{\Delta v_{OUT}(f_{SW})}{\Delta v_{IN}(f_{SW})} = \frac{\left(\frac{4}{\pi}\right) V_{DD}}{\Delta v_{IN(PP)}} \leq \frac{\left(\frac{4}{\pi}\right) V_{DD}}{V_{HYST}} \qquad \begin{array}{c} Square Wave's \\ Fundamental \\ Component \\ Input Ripple's \\ Amplitude \end{array}$$

- If comparator's T_{DLY} << T_{SW} ... No in-band comparator pole;
- Comparator waits for v_{IN} to reach trip point

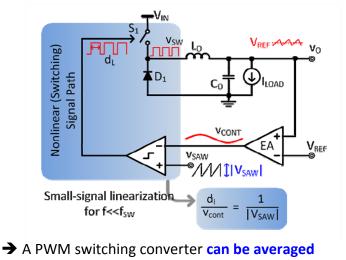
 $\therefore 90^{\circ} \text{ if } \Delta v_{\text{IN}} = V_{\text{HYST}}$ AND < 90° if $\Delta v_{\text{IN}} > V_{\text{HYST}}$;

–FB <u>adjusts</u> Δv_{IN} (<u>gain</u> and <u>phase</u>) until oscillations are sustained.

Introduction: Problem Statement

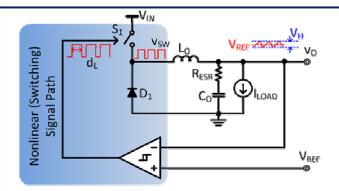
"Hysteretic buck converters are always stable."

[1] K. -C. Lee et al., ISSCC 2010.
[2] C. -H. Tso et al., IEEE Power Electronics Letters, Sept. 2003.
[3] J. H. Park et al., IEEE COMPEL Workshop, 2006.


- Hysteretic DC-DC Converters:
- Simple system and intuitive operation, but always stable?
- Output voltage ripple often exceeds hysteretic window, why?
- Output can ring rail-to-rail when the output impedance

lacks resistive components (e.g., R_{ESR} is low in C_O), why?

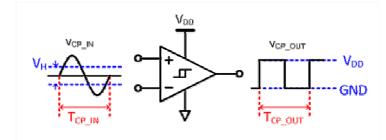
→ How can we explain the stability and dynamics of


hysteretic comparators in switching dc-dc converters?

PWM Switching Converters

and linearized across a switching cycle.

Hysteretic Switching Converters

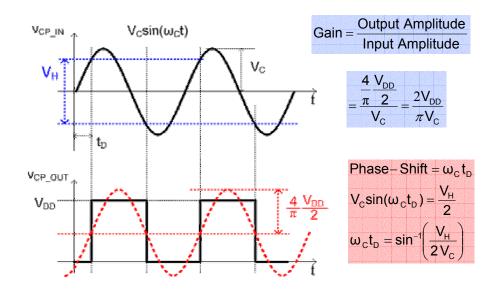

• No error amp, Digital output, Circuit processes frequencies near f_{sw}:

→ Hysteretic comparator is difficult to linearize

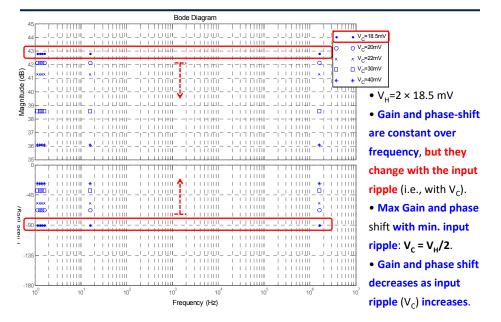
(i.e., extract ac transfer function).

• It is well known that the circuit sustains oscillations at f_{sw}, but how?

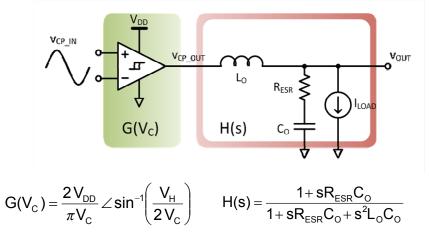
Linearizing a Hysteretic Comparator

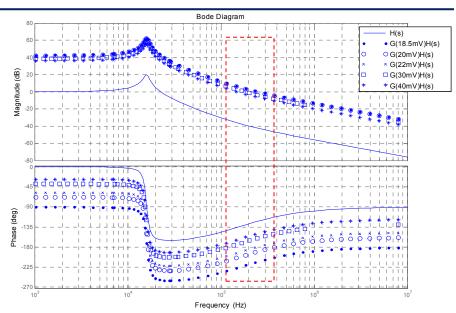


Observations:

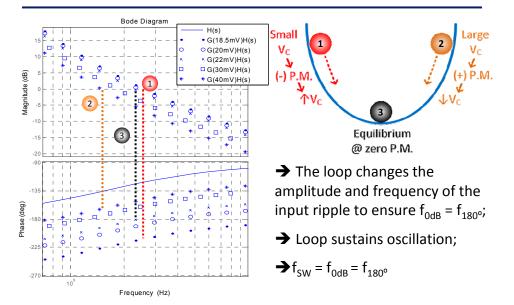

- 1) Nonlinear block
- 2) $T_{CP_IN} = T_{CP_OUT} \rightarrow f_{CP_IN(fund)} = f_{CP_OUT(fund)}$
- 3) Gain and phase-shift relationships can be defined.

* Reference: Chestnut and Mayer, "Servomechanisms and Regulating System Design," New York: John Wiley & Sons, 1955.

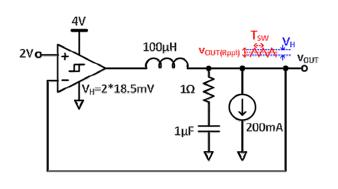

Describing Function: Gain and Phase Shift


Frequency Response

Loop-Gain Transfer Function



→ Loop-Gain = $G(V_c) \times H(s)$



Frequency Response of the Loop-Gain

Frequency Response of the Loop-Gain (zoom in)

Theory vs. Simulation

Parameters	Theoretical Estimation	Simulated Result
f _{sw}	230 KHz	262 KHz
V _{OUT(Rppl)}	22 mV	20 mV

* Source of Error: $v_{\mbox{\scriptsize OUT}}$ is not a sinusoidal waveform.

Conclusions

Hysteretic DC-DC Switching Converters:

- Sustained oscillation of v_{OUT} about $V_{REF} \rightarrow f_{0dB} = f_{180^{\circ}}$;
- Respond within 1 switching cycle $\rightarrow f_{0dB} = f_{SW}$;

∴ Faster than PWM counterparts.

- Hysteretic comparator is **nonlinear**.

Describing Function of Hysteretic Comparators:

- Linearize by analyzing fundamental frequency;
- Supply V_{DD} fixes Δv_{OUT} 's amplitude to a constant;
- Hysteresis delays (phase-shifts) response;
 - → Gain and phase change with input ripple's amplitude.