Stability Analysis: Bode Plots versus Root Locus

Amit Patel, *Student Member, IEEE*, and Gabriel A. Rincón-Mora, *Senior Member, IEEE* Georgia Tech Analog, Power, and Energy IC Research

Abstract: In negative feedback, unstable conditions arise when closed-loop gain A_{CL} approaches ∞ , that is, when loop gain LG_{FB} is -1 (i.e., $|LG_{FB}| = 1$ and $ang(LG_{FB}) = 180^{\circ}$), or more to the point, when $1 + LG_{FB}$ is 0. To ascertain when this occurs and the propensity for a system to become oscillate and/or latch, Bode plots illustrate $|LG_{FB}|$ and $ang(LG_{FB})$ across frequency and Root Locus maps the values of s (which relate to unity-gain freq. f_{0dB}) that produce damped and undamped oscillations as $|LG_{FB}|$ increases from 0 to ∞ .

I. Bode Plot

A linear system's closed-loop gain A_{CL} is

1

$$A_{CL} = \frac{A_{OL}}{1 + LG_{FB}} = \frac{A_{OL}}{1 + LG_{FB0} \left(\frac{Zeros_{OL}}{Poles_{OL}}\right)},$$
 (1)

where LG_{FB0} is loop gain LG_{FB} (i.e., gain through the loop) at low frequencies and $Zeros_{OL}$ and $Poles_{OL}$ refer to the product of zeros and poles present in LG_{FB} . A_{CL} approaches ∞ when its denominator is 0, that is, when

$$+ LG_{FB} = 0$$
 or $LG_{FB} = -1$, (2)

which should be avoided for stable conditions to remain true. In other words, LG_{FB} 's phase shift at unity-gain frequency f_{0dB} should not equal (or exceed) 180° , which means the propensity for instability depends on how much margin exists before ang(LG_{FB}) reaches 180° (i.e., phase margin PM).

Example:

Consider the following 3-pole, 2-zero system:

$$LG_{FB} = \frac{LG_{FB0} \left(1 + \frac{s}{10k}\right) \left(1 + \frac{s}{10k}\right)}{\left(1 + \frac{s}{10}\right) \left(1 + \frac{s}{1k}\right) \left(1 + \frac{s}{1k}\right)}.$$
 (3)

The Bode plot (shown in Fig. 1) illustrates $|LG_{FB}|$ and $ang(LG_{FB})$ across frequency.

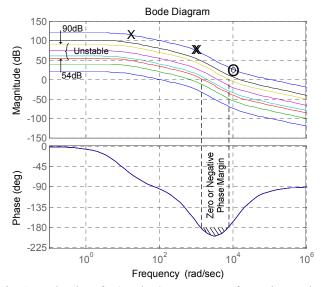


Fig. 1: Bode Plot of a 3-pole, 2-zero system for various values of low-frequency gain LG_{FB0}.

Result: The circuit is unstable if $ang(LG_{FB})$ shifts more than 180° at LG_{FB} 's unity-gain frequency f_{0dB} (i.e., $PM \le 0$), which in the example examined occurs when LG_{FB0} is 54–90 dB.

II. Root Locus

Root "Locus" refers to the "location" of roots in closed-loop gain A_{CL} (otherwise known as "closed-loop poles") for all possible values of low-frequency loop gain LG_{FB0} . In other words, Root Locus maps all s values that allow LG_{FB} to be -1:

$$1 + LG_{FB0} \left(\frac{Zeros_{OL}}{Poles_{OL}} \right) = 0, \qquad (4)$$

which reduces to

$$Poles_{OL} + LG_{FB0}Zeros_{OL} = 0.$$
 (5)

As a result, Root Locus illustrates how closed-loop poles shift as LG_{FB0} increases from 0 to ∞ (across the σ -j ω plane, where s = σ + j ω): from open-loop poles $Poles_{OL}$ (when LG_{FB} is low) to open-loop zeros $Zeros_{OL}$ (when $LG_{FB0}Zeros_{OL}$ >> $Poles_{OL}$). Imaginary axis j ω indicates oscillating frequencies (i.e., f_{0dB} w/ PM \leq 0) and real axis σ indicates the amplitude's growth rates (i.e., PM), where negative values indicate decay rates.

Example:

Considering the same example, Root Locus (shown in Fig. 2) illustrates the closed-loop poles' respective trajectories across the σ -j ω plane as LG_{FB0} increases.

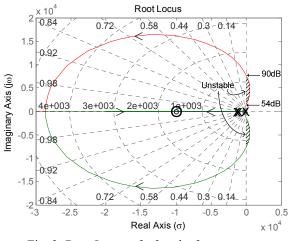


Fig. 2: Root Locus of a 3-pole, 2-zero system.

Result: The circuit is unstable when oscillating frequencies $(f_{0dB}$'s with PM ≤ 0) self sustain through time (like an oscillator) or grow (i.e., $\sigma \geq 0$), in other words, when a trajectory crosses into the right half plane (RHP) of the σ -j ω plot, which in the example examined occurs when LG_{FB0} is 54–90 dB.

Note: Trajectory points with large negative σ values (i.e., fast decay rates) indicate oscillations damp quickly, which translates to more stable and quick-responding (i.e., high-bandwidth) conditions.