Sub-mW, DCM Switched-inductor Converter-efficiency Performance across Process Nodes
Suhwan Kim, Graduate Student Member, IEEE, and Gabriel A. Rincón-Mora, Fellow, IEEE Georgia Tech Analog, Power, and Energy IC Research

Abstract: Shorter minimum channel lengths ($\mathrm{L}_{\mathrm{MIN}}$) increase efficiency because, while conduction losses E_{R} change minimally (since a lower supply voltage V_{DD} opposes the effects of a lower $\mathrm{L}_{\mathrm{MIN}}$ in channel resistance R_{SW}), switching gate-drive losses E_{G} decrease with the square of reductions in $\mathrm{L}_{\mathrm{MIN}}$ (since energy decreases with the square of V_{DD} and a higher C_{OX} opposes a lower $\mathrm{L}_{\mathrm{MIN}}$). Ultimately, however, the power source limits the extent to which $\mathrm{L}_{\mathrm{MIN}}$ can reduce, because a $2.7-4.2-\mathrm{V}$ Li Ion, for example, requires $5-\mathrm{V}(0.7-\mu \mathrm{m})$ switches.
Validation Example: Consider a 0.5 V-to-1 V, sub-mW boost converter in discontinuous-conduction mode (DCM) that outputs fixed packets of energy per cycle $E_{0} /$ cycle with a $50-\mu \mathrm{H}, 5-\Omega$ inductor L_{0} peaking at 4 mA $\left(\mathrm{i}_{\mathrm{L}(\mathrm{PK})}\right)$ and switching with a 1 -ns dead time. The circuit raises output current I_{O} by increasing switching frequency $f_{\text {SW }}$, where $f_{\text {Sw }}$ is nominally at 100 kHz . The selected aspect ratios for the switches $W_{\text {OPT }} / L_{\text {MIN }}$ ensure E_{R} and E_{G} 's sum remains minimal for every sample case. Quiescent current I_{Q} includes analog $\left(\mathrm{I}_{\mathrm{Q}(\mathrm{BW})}\right)$, duty-cycled $\left(\mathrm{I}_{\mathrm{Q}(\mathrm{D})}\right)$, and bias $\left(\mathrm{I}_{\mathrm{Q}(\mathrm{B})}\right)$ components. With $\mathrm{V}_{\text {TH }}$ independently adjusted, oxide capacitance per unit area C_{ox} and, therefore, transconductance parameter K^{\prime} increase with reductions in $\mathrm{L}_{\text {MIN, }}$, as the table shows, and breakdown voltages decrease.

$\mathbf{L}_{\text {MIN }}($ Process $)$	$\mathbf{0 . 1 8} \boldsymbol{\mu m}$		$\mathbf{0 . 3 5} \boldsymbol{\mu} \mathbf{m}$		$\mathbf{0 . 5} \boldsymbol{\mu \mathrm { m }}$	
	NMOS	PMOS	NMOS	PMOS	NMOS	PMOS
Max. $\mathbf{V}_{\mathbf{G S}}, \mathbf{V}_{\mathbf{D S}}$	1.8 V	-1.8 V	3.3 V	-3.3 V	4.5 V	-4.5 V
$\mathbf{V}_{\mathbf{T H}}$	0.65 V	-0.58 V	0.5 V	-0.6 V	0.86 V	-0.8 V
$\mathbf{C}_{\mathbf{O X}}\left(\mathbf{T}_{\mathbf{O X}}\right)$	$7.7 \mathrm{fF} / \mu \mathrm{m}^{2}(45 \AA)$	$4.5 \mathrm{fF} / \mu \mathrm{m}^{2}(74 \AA)$		$2.3 \mathrm{fF} / \mu \mathrm{m}^{2}(151 \AA)$		
\mathbf{K}^{\prime}	135 $\mu \mathrm{~A} / \mathrm{V}^{2}$	$35 \mu \mathrm{~A} / \mathrm{V}^{2}$	$89 \mu \mathrm{~A} / \mathrm{V}^{2}$	33 $\mu \mathrm{~A} / \mathrm{V}^{2}$	47 $\mu \mathrm{~A} / \mathrm{V}^{2}$	12.5 $\mu \mathrm{~A} / \mathrm{V}^{2}$

Table 1. Process nodes.
Losses: With fixed packets of energy per cycle, $\mathrm{P}_{\mathrm{R}}\left(\propto \mathrm{i}_{\text {RMS }}{ }^{2} \mathrm{R}_{\mathrm{EQ}}\right)$ increases with f_{SW} and $\mathrm{R}_{\text {SW }}$ so, since a rise in K^{\prime} (i.e., C_{OX}) offsets a fall in $\mathrm{V}_{\mathrm{DD}}, \mathbf{P}_{\mathbf{R}} \propto \mathbf{L}_{\text {MIN }} \mathbf{f}_{\mathrm{SW}} / \mathbf{W}$. Since P_{G} is $\left(\mathrm{C}_{\mathrm{OX}} W \mathrm{~L}_{\text {MIN }}\right) \mathrm{V}_{\mathrm{DD}}{ }^{2} \mathrm{f}_{\text {SW }}$ and $\mathrm{C}_{\mathrm{OX}}\left(\propto 1 / \mathrm{L}_{\text {MIN }}\right)$ cancels $\mathrm{L}_{\text {MIN }}, \mathbf{P}_{\mathbf{G}} \propto \mathbf{W L}_{\text {MIN }} \mathbf{f}_{\text {SW }}$. To maintain bandwidth $\quad \mathrm{g}_{\mathrm{m}} / \mathrm{C}_{\mathrm{EQ}}, \quad \mathrm{I}_{\mathrm{Q}(\mathrm{BW})}$ should increase with $\mathrm{L}_{\mathrm{MIN}}{ }^{2}$ to track C_{EQ} so $\mathbf{P}_{\mathbf{Q}(\mathbf{B W})}=\mathbf{I}_{\mathbf{Q}(\mathbf{B W})} \mathbf{V}_{\mathbf{D D}} \propto \mathbf{L}_{\text {MIN }}{ }^{3}$. To keep losses low, other circuit blocks should only operate on demand, irrespective of $\mathrm{L}_{\text {MIN }}$, so duty-cycled blocks dissipate $\mathbf{P}_{\mathbf{Q (D)}}=\mathbf{I}_{\mathbf{Q}(\mathbf{D})} \mathbf{D}_{\mathbf{O}} \mathbf{V}_{\mathbf{D D}} \propto \mathbf{L}_{\mathbf{M I N}}$, and similarly, the bias generator consumes $\mathbf{P}_{\mathbf{Q (B)}}=\mathbf{I}_{\mathbf{Q (B)})} \mathbf{V}_{\mathbf{D D}} \propto \mathbf{L}_{\text {MIN }}$. There is an optimum $W_{\text {OPT }} / L_{\text {MIN }}$ that

Fig. 1. Losses across (a) optimal channel width and (b) process node. balances (and minimizes aggregate losses) E_{R} and E_{G}, as Fig. 1a shows, so when using $\mathrm{W}_{\text {OPT }}$, total losses $\mathrm{E}_{\mathrm{R}}+\mathrm{E}_{\mathrm{G}}$ $+\mathrm{E}_{\mathrm{Q}}$ or E_{L} (in Fig. 1b) $\propto \mathrm{L}_{\text {MiN }}$, but because E_{G} decreases faster than E_{R} with lower $\mathrm{L}_{\text {MIN }}$'s, E_{R} 's effects magnify at lower $\mathrm{L}_{\text {MIN }}$'s and E_{L} 's falling rate, as a result, decreases at lower $\mathrm{L}_{\text {MiN }}$'s.

Simulation Results:

Fig. 2. (a) Circuit and (b) efficiency.

L ${ }_{\text {MIN }}$ (Process)		0.18 mm	0.35 mm	0.5 m m
Optimum Aspect Ratio $\mathrm{W}_{\text {OPT }} / \mathrm{L}_{\text {MIN }}$		3710	1250	1035
$\mathrm{E}_{\mathrm{R}(\mathrm{OPT})}$	$\mathrm{R}_{\text {SW }}(\times 2$ switches)	$\begin{gathered} 7.4 \mathrm{pJ} \\ \text { with } 1.7 \Omega \\ \hline \end{gathered}$	$\begin{gathered} 15.0 \mathrm{pJ} \\ \text { with } 3.5 \Omega \\ \hline \end{gathered}$	$\begin{gathered} 24.1 \mathrm{pJ} \\ \text { with } 5.6 \Omega \end{gathered}$
	$\mathrm{R}_{\text {L(ESR) }}(5 \Omega)$	21.3 pJ	21.3 pJ	21.3 pJ
$\mathrm{E}_{\mathrm{G}(\mathrm{OPT})}$	Gate Drive ($\times 2$ switches)	$\begin{gathered} 7.4 \mathrm{pJ} \\ \text { with } 1.1 \mathrm{pF} \end{gathered}$	$\begin{gathered} 15.0 \mathrm{pJ} \\ \text { with } 0.69 \mathrm{pF} \end{gathered}$	$\begin{gathered} 24.1 \mathrm{pJ} \\ \text { with } 0.60 \mathrm{pF} \end{gathered}$
	IV overlap	7.2 pJ	13.2 pJ	18 pJ
E_{Q}	$\begin{gathered} \mathrm{t}_{\mathrm{COND}}\left(\mathrm{CMP}_{\mathrm{O}} \& \mathrm{CMP}_{\mathrm{AD}}\right. \\ \text { for } 0.8 \mu \mathrm{~s}) \end{gathered}$	28.8 pJ	52.8 pJ	72 pJ
	$\begin{gathered} \mathrm{t}_{\mathrm{SW}}\left(\mathrm{CMP}_{\mathrm{MODE}} \& \mathrm{CLK}_{\mathrm{GEN}}\right. \\ \text { for } 10 \mu \mathrm{~s}) \end{gathered}$	36 pJ	66 pJ	90 pJ
Total Losses E_{L}		123 pJ	213.4 pJ	297.7 pJ
$\mathrm{E}_{\mathrm{O}} /$ Cycle @ $\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}$ \& $\mathrm{I}_{\mathrm{L}(\mathrm{PK})}=4 \mathrm{~mA}$		800 pJ	800 pJ	800 pJ
Efficiency	Calculated $\eta_{\text {CAL }}$	86.7 \%	78.9 \%	72.9 \%
	Simulated $\boldsymbol{\eta}_{\text {SIM }}$	84.8 \%	76.0 \%	63.5 \%

Table 2. Efficiency performance.

