Sub-mW, DCM Switched-inductor Converter-efficiency Performance across Process Nodes

Suhwan Kim, Graduate Student Member, IEEE, and Gabriel A. Rincón-Mora, Fellow, IEEE Georgia Tech Analog, Power, and Energy IC Research

Abstract: Shorter minimum channel lengths (L_{MIN}) increase efficiency because, while conduction losses E_R change minimally (since a lower supply voltage V_{DD} opposes the effects of a lower L_{MIN} in channel resistance R_{SW}), switching gate-drive losses E_G decrease with the square of reductions in L_{MIN} (since energy decreases with the square of V_{DD} and a higher C_{OX} opposes a lower L_{MIN}). Ultimately, however, the power source limits the extent to which L_{MIN} can reduce, because a 2.7 – 4.2-V Li Ion, for example, requires 5-V (0.7- μ m) switches.

Validation Example: Consider a 0.5 V-to-1 V, sub-mW boost converter in discontinuous-conduction mode (DCM) that outputs fixed packets of energy per cycle E_0 /cycle with a 50-µH, 5- Ω inductor L_0 peaking at 4 mA (i_{L(PK)}) and switching with a 1-ns dead time. The circuit raises output current I_O by increasing switching frequency f_{SW} , where f_{SW} is nominally at 100 kHz. The selected aspect ratios for the switches W_{OPT}/L_{MIN} ensure E_{R} and E_{G} 's sum remains minimal for every sample case. Quiescent current I_0 includes analog ($I_{O(BW)}$), duty-cycled ($I_{O(D)}$), and

bias $(I_{O(B)})$ components. With V_{TH} independently adjusted, oxide capacitance per unit area C_{OX} and, therefore, transconductance parameter K' increase with reductions in L_{MIN} , as the table shows, and breakdown voltages decrease.

L _{MIN} (Process)	0.18 µm		0.35 μm		0.5 μm			
	NMOS	PMOS	NMOS	PMOS	NMOS	PMOS		
Max. V _{GS} , V _{DS}	1.8 V	-1.8 V	3.3 V	-3.3 V	4.5 V	-4.5 V		
V _{TH}	0.65 V	-0.58 V	0.5 V	-0.6 V	0.86 V	-0.8 V		
$C_{OX}(T_{OX})$	7.7 fF/μm ² (45 Å)		4.5 fF/μm ² (74 Å)		2.3 fF/μm ² (151 Å)			
К'	135	$35 \ \mu A/V^2$	$89 \ \mu \text{A/V}^2$	33	47	12.5		
	$\mu A/V^2$			$\mu A/V^2$	$\mu A/V^2$	$\mu A/V^2$		

Table 1. Process nodes.

Losses: With fixed packets of energy per cycle, P_R ($\propto i_{RMS}^2 R_{EQ}$) increases with f_{SW} and R_{SW} so, since a rise in K' (i.e., C_{OX}) offsets a fall in V_{DD} , $P_R \propto L_{MIN} f_{SW}/W$. Since P_G is $(C_{OX} W L_{MIN}) V_{DD}^2 f_{SW}$ and $C_{OX} (\propto 1/L_{MIN})$ cancels

 L_{MIN} , $P_G \propto W L_{MIN}^2 f_{SW}$. To maintain bandwidth $g_m/C_{EQ},\ I_{Q(BW)}$ should increase with L_{MIN}^{2} to track C_{EQ} so $P_{O(BW)} = I_{O(BW)}V_{DD} \propto L_{MIN}^{3}$. To keep losses low, other circuit blocks should only operate on demand, irrespective of L_{MIN}, so duty-cycled blocks dissipate $P_{Q(D)} = I_{Q(D)}D_{O}V_{DD} \propto L_{MIN}$ and similarly, the bias generator consumes $P_{Q(B)} = I_{Q(B)}V_{DD} \propto L_{MIN}$. There is an optimum W_{OPT}/L_{MIN} that

Fig. 1. Losses across (a) optimal channel width and (b) process node.

balances (and minimizes aggregate losses) E_R and E_G , as Fig. 1a shows, so when using W_{OPT} , total losses $E_R + E_G$ + E_Q or E_L (in Fig. 1b) $\propto L_{MIN}$, but because E_G decreases faster than E_R with lower L_{MIN} 's, E_R 's effects magnify at lower L_{MIN}'s and E_L's falling rate, as a result, decreases at lower L_{MIN}'s.

Simulation Results:

Fig. 2. (a) Circuit and (b) efficiency.

L _{MIN} (Process)		0.18 μm	0.35 μm	0.5 μm				
Optimum Aspect Ratio W _{OPT} /L _{MIN}		3710	1250	1035				
E _{r(OPT)}	R_{SW} (× 2 switches)	7.4 pJ with 1.7 Ω	15.0 pJ with 3.5 Ω	24.1 pJ with 5.6 Ω				
	$R_{L(ESR)}$ (5 Ω)	21.3 pJ	21.3 pJ	21.3 pJ				
E _{G(OPT)}	Gate Drive (× 2 switches)	7.4 pJ with 1.1 pF	15.0 pJ with 0.69 pF	24.1 pJ with 0.60 pF				
	IV overlap	7.2 pJ	13.2 pJ	18 pJ				
E _Q -	t _{COND} (CMP _O & CMP _{AD} for 0.8 μs)	28.8 pJ	52.8 pJ	72 pJ				
	t _{SW} (CMP _{MODE} & CLK _{GEN} for 10 μs)	36 pJ	66 pJ	90 pJ				
Total Losses E _L		123 pJ	213.4 pJ	297.7 pJ				
$E_{O}/Cycle$ @ $V_{O} = 1 V \& I_{L(PK)} = 4 mA$		800 pJ	800 pJ	800 pJ				
Efficiency	Calculated η_{CAL}	86.7 %	78.9 %	72.9 %				
	Simulated η _{SIM}	84.8 %	76.0 %	63.5 %				
Table 2. Efficiency performance								

ble 2. Efficiency performance