Unless otherwise specified, assume room temperature ($\mathrm{T}=300 \mathrm{~K}$).

1) Purpose: Understanding $p-n$ junction band diagrams.

Consider a $p-n$ junction with $N_{\mathrm{A}}=5 \times 10^{14} \mathrm{~cm}^{-3}$ and $N_{\mathrm{D}}=10^{18} \mathrm{~cm}^{-3}$. Draw the band diagram of this device under the following conditions. Solve for and label all energy levels where applicable (intrinsic Fermi levels, Fermi levels and quasi-Fermi levels) and the potential barrier in each diagram.
a. At equilibrium (applied voltage $V_{\mathrm{A}}=0 \mathrm{~V}$).
b. At $V_{\mathrm{A}}=0.5 \mathrm{~V}$.
c. At $V_{\mathrm{A}}=-1.0 \mathrm{~V}$.
2) Purpose: Understanding $p-n$ junction electrostatics.

Consider a silicon $p-n$ junction with $N_{\mathrm{A}}=5 \times 10^{17} \mathrm{~cm}^{-3}$ and $N_{\mathrm{D}}=10^{15} \mathrm{~cm}^{-3}$. The relative permittivity of silicon is 11.8 , and the permittivity of free space is $8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}$.
a. Determine the magnitude of the depletion width on the p-side of the metallurgical junction $\left(x_{\mathrm{p}}\right)$, the depletion width on the n-side of the metallurgical junction $\left(x_{\mathrm{n}}\right)$, and the entire depletion width (W).
b. Determine the maximum electric field in the depletion width, as well as the electric field at $x=-x_{\mathrm{p}} / 2$.
c. Determine the built-in potential $\left(V_{\mathrm{bi}}\right)$, as well as the potential at $x=x_{\mathrm{n}} / 2$.
3) Purpose: Understanding junction capacitance.

Consider the $p-n$ junction described in Question 2 above. Assume the cross-sectional area of the diode is $2 \times 10^{-5} \mathrm{~cm}^{2}$.
a. Determine the equilibrium junction capacitance ($C_{\mathrm{J} 0}$).
b. The diode is to be used in an LC circuit with a $10-\mathrm{nH}$ inductor. If the desired oscillation frequency of the circuit is $f=5 \mathrm{GHz}$, at what voltage should the diode be biased?
Hint: The applied bias will be negative.
4) Purpose: Understanding $p-n$ junction carrier concentrations.

Consider a silicon $p-n$ junction with $N_{\mathrm{A}}=10^{16} \mathrm{~cm}^{-3}$ and $N_{\mathrm{D}}=10^{18} \mathrm{~cm}^{-3}$. Let the mobility of electrons $\left(\mu_{\mathrm{n}}\right)$ be $1300 \mathrm{~cm}^{2} / \mathrm{V}$-s and the mobility of holes $\left(\mu_{\mathrm{p}}\right)$ be $400 \mathrm{~cm}^{2} / \mathrm{V}$-s. Let the minority carrier lifetime electrons and holes (τ_{n} and τ_{p}, respectively) both be $10^{-6} \mathrm{~s}$. There is an applied voltage of 0.6 V .
a. Solve for the excess electron concentrations on the p-side of the junction at $130 \mu \mathrm{~m}$, $580 \mu \mathrm{~m}$, and $1160 \mu \mathrm{~m}$ away from the depletion width edge (i.e. moving further into the p-side of the device).
b. Solve for the excess hole concentration on the n-side of the junction at $70 \mu \mathrm{~m}$ and $1000 \mu \mathrm{~m}$ away from the depletion width edge.
5) Purpose: Understanding $p-n$ junction $I-V$ characteristics.

Consider the same diode described in Question 3. What is the reverse saturation current $\left(I_{0}\right)$ of the diode? What is the current in the diode when the applied voltage $\left(V_{\mathrm{A}}\right)$ is 0.6 V ?
6) Purpose: Understanding how diodes behave in circuits.

Find the Q-points for the three diodes in the circuit below. Use the constant voltage drop model for the diodes, with $V_{o n}=0.7 \mathrm{~V}$.
Hint: See Example 3.8 in Jaeger \& Blalock.

7) Purpose: Using diodes to shape signal waveform.

Calculate output voltage, v_{o}, for the following circuit. Show the graphical representation of v_{O} for $-20 \mathrm{~V} \leq v_{I} \leq+20 \mathrm{~V}$, assuming ideal diodes. Show all work for full credit.

8) Purpose: Implementing diodes in practical circuits.

A particular design of a voltage regulator circuit is shown in the next page. Diodes D_{1} and D_{2} each has a voltage drop of 0.65 V at 1.4 mA .
(a) What regulator voltage output, V_{O}, when a $1 \mathrm{k} \Omega$ resistance is not connected (no load condition)?
(b) What is V_{O} when a $1 \mathrm{k} \Omega$ resistance is added as load?

Hint: Use diode exponential model and iterative process to solve V_{O}.

9) Purpose: Investigating the full-wave bridge rectifier.

Consider the following full wave rectifier circuit. The supply voltage from wall-point is stepped down using a transformer and connected to the input of the full wave rectifier. Here, the input voltage $\left(v_{I}\right)$ to the rectifier is a sine-wave with amplitude of 10 V . Assume that diodes can be represented by the constant-voltage-drop model with $V_{D}=$ 0.6 V .
(a) Show the current path for the positive and negative half-cycle of v_{I}. Also, sketch and clearly label the transfer characteristic (v_{O} vs. v_{I}) and the time response (same plot showing v_{O} vs. t and v_{I} vs. t) of the circuit shown.

(b) The output resistance, R is now replaced with a Zener diode, Z. Assume that the Zener voltage is 6.5 V and that r_{z} is negligibly small. How does the transfer characteristic and time response change? Generate both plots for the modified circuit.

