ECE 3040 Dr. Doolittle

Homework 4

Unless otherwise specified, assume room temperature (T = 300 K).

- 1) <u>Purpose</u>: Understanding *p*-*n* junction band diagrams. Consider a *p*-*n* junction with $N_A = 5 \times 10^{14}$ cm⁻³ and $N_D = 10^{18}$ cm⁻³. Draw the band diagram of this device under the following conditions. Solve for and label all energy levels where applicable (intrinsic Fermi levels, Fermi levels and quasi-Fermi levels) and the potential barrier in each diagram.
 - a. At equilibrium (applied voltage $V_A = 0$ V).
 - b. At $V_{\rm A} = 0.5$ V.
 - c. At $V_{\rm A} = -1.0$ V.
- 2) <u>Purpose</u>: Understanding *p*-*n* junction electrostatics. Consider a silicon *p*-*n* junction with $N_A = 5 \times 10^{17}$ cm⁻³ and $N_D = 10^{15}$ cm⁻³. The relative permittivity of silicon is 11.8, and the permittivity of free space is 8.85×10^{-14} F/cm.
 - a. Determine the magnitude of the depletion width on the *p*-side of the metallurgical junction (x_p) , the depletion width on the *n*-side of the metallurgical junction (x_n) , and the entire depletion width (W).
 - b. Determine the maximum electric field in the depletion width, as well as the electric field at $x = -x_p/2$.
 - c. Determine the built-in potential (V_{bi}), as well as the potential at $x = x_n/2$.
- 3) <u>Purpose</u>: Understanding junction capacitance.

Consider the *p*-*n* junction described in Question 2 above. Assume the cross-sectional area of the diode is $2x10^{-5}$ cm².

- a. Determine the equilibrium junction capacitance (C_{J0}) .
- b. The diode is to be used in an LC circuit with a 10-nH inductor. If the desired oscillation frequency of the circuit is f = 5 GHz, at what voltage should the diode be biased?

Hint: The applied bias will be negative.

4) <u>Purpose</u>: Understanding p-n junction carrier concentrations.

Consider a silicon *p*-*n* junction with $N_{\rm A} = 10^{16}$ cm⁻³ and $N_{\rm D} = 10^{18}$ cm⁻³. Let the mobility of electrons ($\mu_{\rm n}$) be 1300 cm²/V-s and the mobility of holes ($\mu_{\rm p}$) be 400 cm²/V-s. Let the minority carrier lifetime electrons and holes ($\tau_{\rm n}$ and $\tau_{\rm p}$, respectively) both be 10⁻⁶ s. There is an applied voltage of 0.6 V.

- a. Solve for the excess electron concentrations on the *p*-side of the junction at 130 μ m, 580 μ m, and 1160 μ m away from the depletion width edge (i.e. moving further into the *p*-side of the device).
- b. Solve for the excess hole concentration on the *n*-side of the junction at 70 μ m and 1000 μ m away from the depletion width edge.

- 5) <u>Purpose</u>: Understanding *p*-*n* junction *I*-*V* characteristics. Consider the same diode described in Question 3. What is the reverse saturation current (I_0) of the diode? What is the current in the diode when the applied voltage (V_A) is 0.6 V?
- 6) <u>Purpose:</u> Understanding how diodes behave in circuits. Find the Q-points for the three diodes in the circuit below. Use the constant voltage drop model for the diodes, with $V_{on} = 0.7$ V.

Hint: See Example 3.8 in Jaeger & Blalock.

7) <u>Purpose:</u> Using diodes to shape signal waveform.

Calculate output voltage, v_o , for the following circuit. Show the graphical representation of v_o for $-20 \text{ V} \le v_I \le +20 \text{ V}$, assuming ideal diodes. Show all work for full credit.

8) <u>Purpose:</u> Implementing diodes in practical circuits.

A particular design of a voltage regulator circuit is shown in the next page. Diodes D_1 and D_2 each has a voltage drop of 0.65 V at 1.4 mA.

- (a) What regulator voltage output, V_0 , when a 1 k Ω resistance is not connected (no load condition)?
- (b) What is V_{Ω} when a 1 k Ω resistance is added as load?

<u>Hint</u>: Use diode exponential model and iterative process to solve V_0 .

9) <u>Purpose:</u> Investigating the full-wave bridge rectifier.

Consider the following full wave rectifier circuit. The supply voltage from wall-point is stepped down using a transformer and connected to the input of the full wave rectifier. Here, the input voltage (v_I) to the rectifier is a *sine-wave* with amplitude of 10 V. Assume that diodes can be represented by the constant-voltage-drop model with $V_D = 0.6$ V.

(a) Show the current path for the positive and negative half-cycle of v_I . Also, sketch and clearly label the transfer characteristic (v_0 vs. v_I) and the time response (same plot showing v_0 vs. t and v_I vs. t) of the circuit shown.

(b) The output resistance, R is now replaced with a Zener diode, Z. Assume that the Zener voltage is 6.5 V and that r_z is negligibly small. How does the transfer characteristic and time response change? Generate both plots for the modified circuit.

