ECE 3080: Semiconductor Devices

for Computer Engineering and Telecommunication Systems

"The significant problems we face cannot be solved by the same level of thinking that created them." - Albert Einstein

Dr. Alan Doolittle
School of Electrical and Computer Engineering
Georgia Institute of Technology

Intel, 45-nm CMOS "Dual Core" process technology Compared to older Pentium processor

Why do we need to know about Nano-electronic "materials" details? - A Case study of the evolution of the Transistor

Moore’s Law: The Growth of the Semiconductor Industry

Moore's law (Gordon Moore, co-founder of Intel, 1965):
Empirical rule which predicts that the number of components per chip doubles every 18-24 months
Moore's Law turned out to be valid for more than 30 years (and still is!) transistors

Why do we need to know about Nano-electronic

 "materials" details? - A Case study of the evolution of the Transistor
Moore's Law: The Growth of the Semiconductor Industry

Why do we need to know about Nano-electronic "materials" details? - A Case study of the evolution of the Transistor

from G. Moore, ISSCC 2003

Why do we need to know about Nano-electronic "materials" details? - A Case study of the evolution of the Transistor

How did we go from 4 Transistors/wafer to Billions/wafer?

Why do we need to know about Nano-electronic "materials" details? - A Case study of the evolution of the Transistor

Sand to Silicon - Major Historical Hurdles.

Play parts of movie on Silicon Fabrication

Why do we need to know about Nano-electronic

"materials" details? - A Case study of the evolution of the Transistor

Some Facts About Silicon (Si):

- Si is a Group IV element, and crystallizes in the diamond structure
- Perfect Si crystals can be grown very large (12 inches by 8 feet!)
- Si can be made extremely pure (<.000001 ppm impurities!)
- Si is very abundant and non-toxic (70% of the earth's crust are silicates!)
- Si oxidizes trivially to form one of nature's most perfect insulators $\left(\mathrm{SiO}_{2}\right)$
- Si is a great conductor of heat (better than many metals!)

300 mm, 2005

Why do we need to know about Nano-electronic "materials" details? - A Case study of the evolution of the Transistor

Common Statement: First Transistor was invented by Shockley, Brattain and Bardeen on December 23, 1947 at 5 PM - Wrong!

The first patent for the field-effect transistor principle was filed in Canada by Austrian-Hungarian physicist Julius Edgar Lilienfeld on October 22, 1925

The level of understanding you gained about transistors in ECE 3040 is $\mathbf{6 0}$ years old!!!!
Ga Tech Graduates make the future happen and thus need to understand the state of the art in order to advance it.

The Basic Device in CMOS Technology is the MOSFET

Direction of Desired
Current flow...
...is controlled by an electric field.-.
...but this field can also drive current through a small gate.
Modern transistors have more power loss in the gate circuit than the source drain! New approaches are needed.

Why do we need to know about Nano-electronic "materials" details? - A Case study of the evolution of the Transistor

Early MOSFET: SiO_{2} Gate Oxide, Aluminum (Al) Source/Drain/Gate metals Problem: As sizes shrank, devices became unreliable due to metallic spiking through the gate oxide.

Solution: Replace Metal Gate with a heavily doped poly-silicon.

This change carried us for decades with challenges in fabrication (lithography) being the primary barriers that were overcome ...until...

Dr. W. Alan Doolittle

Why do we need to know about Nano-electronic "materials" details? - A Case study of the evolution of the Transistor

Semi-Modern MOSFET (late 1990's vintage): SiO_{2} Gate Oxide, Polysilicon gate metals, metal source/drain contacts and Aluminum metal interconnects

Problem: As interconnect sizes shrank, Aluminum lines became too resistive leading to slow RC time constants
Solution: Replace Aluminum with multimetal contacts (TiN, TaN, etc...) and copper interconnects.

This change carried us for ~ 1 decade with challenges in fabrication
 (lithography) being the primary barriers that were overcome ...until...

Why do we need to know about Nano-electronic

 "materials" details? - A Case study of the evolution of the Transistor Microprocessor Power Consumption

Why do we need to know about Nano-electronic "materials"
details? - A Case study of the evolution of the Transistor

2008 Vintage Intel Microprocessor

2008 Vintage Intel Microprocessor

2008 Vintage Intel Microprocessor

2008 Vintage Intel Microprocessor

2008 Vintage Intel Microprocessor

- High K Gate Dielectric:
$\cdot \mathrm{K}$ of $\mathrm{SiO}_{2} \sim 3.9<$ Hafnium Silicate $\sim ?<\mathrm{HfO}_{2} \sim 22$
-Deviation from SiO_{2} required reverting back to Metal Gates (no Poly-silicon)
-Limited Speed of Silicon partially overcome by using SiGe to "mechanically strain" Si channel resulting in Energy Band structure modification that increases electron/hole mobility.

Strained Silicon MOSFET

Germanium atoms

Silicon crystal

from IEEE Spectrum, 10/2002

- Silicon in channel region is strained in two dimensions by placing a Si-Ge layer underneath (or more recently adjacent to) the device layer
- Strained Si results in changes in the energy band structure of conduction and valence band, reducing lattice scattering
- Benefit: increased carrier mobility, increased drive current (drain current)

What is in the

 future? DoubleGate Transistors- Change of basic transistor structure by introducing a double gate (or more general enclose the channel area by the gate)
- Benefit: better channel control resulting in better device characteristics
- Challenge: double-gate transistors require completely new device structures with new fabrication challenges

from IEEE Spectrum, 10/2002

Double-Gate Transistor Designs

FinFET Double-Gate Transistor

from http://www.intel.com/pressroom
Slide after Dr. Oliver Brandt

Vertical multi-gate structures take us back to JFET like structures but now with the advantage of insulators. - Life is circular

And what about Bipolar and III-V?

Future for Compound Semiconductors is strong!!!

-InP HEMT (transistors) operate above 1THz - Northrop Grumman Inc.
-InP Double Heterostructure Bipolar Transistors (DHBT) operate to as high as 865 GHz ! - Milton Feng et al.
-InP Double Heterostructure Bipolar Transistors (DHBT) circuits operate to as high as 310 GHz ! - HRL Inc.
-Demonstration of InP Optical Transistors and Lasers that
 can directly integrate into fiber optic systems at 100's of GHz.

- Milton Feng et al.
- SiGe HBTs operate to $300 \mathrm{GHz}(500 \mathrm{GHz}$ at cryogenic temperatures) - IBM / Dr. John Cressler et al.
-InSb based devices offer even more promise for low power high speed (transistor mobility of $\sim 30,000$ compared to ~ 100 in Si MOSFET).
-GaN based devices offer 100x improvement in power density!
- SiC based devices offer Megawatts switching capability.
-Will likely see a surge in "Hybrid Si - ??? Technologies"

Consider LED as a Case Study of why we must know the materials technologies on the "Nano Scale"

Movie Complements of Dr. Christian Kisielowski from Lawrence Berkeley DOE Labs.

