

ECE 4813

Semiconductor Device and Material Characterization

Dr. Alan Doolittle School of Electrical and Computer Engineering Georgia Institute of Technology

As with all of these lecture slides, I am indebted to Dr. Dieter Schroder from Arizona State University for his generous contributions and freely given resources. Most of (>80%) the figures/slides in this lecture came from Dieter. Some of these figures are copyrighted and can be found within the class text, *Semiconductor Device and Materials Characterization*. <u>Every serious</u> <u>microelectronics student should have a copy of this book!</u>

Optical Characterization

Optical Microscopy Ellipsometry Transmission Reflection Photoluminescence

Optical Excitation

Optical Characterization

- Photometric Measurements
 - Amplitude of reflected or transmitted light
 - \Rightarrow Optical constants, absorption coefficients

Optical Characterization

- Interference Measurements
 - Phase of reflected or transmitted light
 - ⇒ Film thickness, surface structure
 - Two emerging light beams are phase shifted
 - ⇒ Constructive and destructive interference

$$n_1 \sin \phi' = n_0 \sin \phi$$

$$d = \frac{\lambda}{2\sqrt{n_1^2 - n_0^2 \sin^2 \phi}}$$

Interference

Eye

Oxide thickness variations ECE 4813 Dr. Alan Doolittle

Interference

- Blue Morpho butterfly gets its bright blue color from interference effects
- Interference due to microscopic ridges on the wings

Optical Characterization

- Polarization Measurements
 - Ellipticity of reflected light
 - \Rightarrow Optical constants, film thickness, surface structure
- Polarizer polarizes the light into particular orientation
- H-sheet; most popular linear polarizer
 - Polyvinyl alcohol (plastic sheet) is heated and stretched
 - Sheet is dipped into iodine solution
 - Iodine impregnates the plastic, attaches to long-chain molecules, forms "wire" grid

Polarizing Filter Effect

- Colored light from thin-film iridescence in butterflies is often polarized
- Left wings: unmodified
- Right wings: generated by taking two photographs through a polarizing filter rotated by 90° between exposures, and then producing the difference of the two images
- One shows a pattern of polarized and depolarized regions, the other does not

Wing color important in male attraction to females

A. Sweeney et al. *Nature* **423**, 31 (2003)

Diamonds

What's so special about diamonds?

Star of South Africa Diamond 83.5 Carats

Taylor Diamond 69 Carats

Transmission, Reflection, Refraction

A diamond is polished into a particular shape for maximum light refraction/reflection/transmission

Optical Microscopy

 Light cannot be focused to an infinitesimally small spot due to the wave nature of light

Optical Microscopy

- There is no lower limit to the size of an isolated object that can be detected
- The minimum separation, s, of two point objects occurs when the first maximum of the diffraction pattern of one object falls on the first minimum of the second object

$$s = \frac{0.61\lambda}{n\sin\theta} = \frac{0.61\lambda}{NA}$$

λ = free space wavelength,
n = refractive index of immersion
medium, θ = half the angle subtended
by the lens at the object,
NA = numerical aperture

Best resolution about 0.25 μ m for $\lambda \approx 0.4 \ \mu$ m, NA ≈ 1

Optical Microscopy

Different approaches to optical microscopy bring out different features

Bright Field

Dark Field

Interference Contrast

Near Field Optical Microscopy

- Conventional microscopy
 - Images the far field, where Raleigh limit prevails
- Near field microscopy
 - Images the near field, where solution determined by aperture, not wavelength
 - Detector must be very close to sample

Near Field Optical Microscopy

The light is confined to a small aperture

Drawn or etched glass fiber

TopographyTransmissionFluorescenceImage: Strain Strain

Polymer Sample

Physics.nist.gov/Divisions/Div844/facilities/nsom/nsom.html

Ellipsometry

Definition

 Measurement of the state of polarization of a polarized light wave

General Scheme

A polarized light wave probe interacts with an "optical system", this interaction changes the state of polarization, measurement of the initial and final states is performed this yields information about the optical constants of the "system"

Null Ellipsometer

• Angles P, C, and A lead to ellipsometer quantities ρ , Ψ and Δ

Ellipsometry

- Nondestructive technique
- Film thickness measurement; can measure film thicknesses down to 1 nm
- Refractive index determination; can measure refractive index of thin films of unknown thickness
- Azimuth angles can be measured with great accuracy
- Measures a ratio of two values
 - Highly accurate and reproducible (even in low light levels)
 - No reference sample necessary
 - Not as susceptible to scatter, lamp or purge fluctuations
- Surface uniformity assessment
- Composition determinations
- Can be used for *in situ* analysis

Ellipsometer

- Null ellipsometry
 - Polarizer-Compensator-Sample-Analyzer
 - Polarizer and Compensator Angles adjusted for linear polarization upon reflection
 - Analyzer is adjusted to extinguish reflected light
- Rotating Analyzer Ellipsometry
 - Analyzer rotates

 $I(\theta) = I_0 [1 + a_2 \cos 2\theta + b_2 \sin 2\theta]$

$$\Psi = \frac{1}{2}\cos^{-1}(-a_2); \quad \Delta = \cos^{-1}\left(\frac{b_2}{\sqrt{1-a_2^2}}\right)$$

- Spectroscopic Ellipsometry
 - Uses several wavelengths
 - Can also use several angles

Ellipsometry

 Measure change of polarization state of light reflected from a surface

$$R_{p} = \frac{\mathsf{E}_{p}(\text{reflected})}{\mathsf{E}_{p}(\text{incident})}; \quad R_{s} = \frac{\mathsf{E}_{s}(\text{reflected})}{\mathsf{E}_{s}(\text{incident})}$$
$$\rho = \frac{R_{p}}{R_{s}} = \tan \Psi e^{j\Delta}$$

For an air-solid with an absorbing substrate

$$n_{1}^{2} - k_{1}^{2} = n_{0}^{2} \sin^{2} \phi \left[1 + \frac{\tan^{2} \phi \left[\cos^{2} 2\Psi - \sin^{2} 2\Psi \sin^{2} \Delta \right]}{\left[1 + \sin 2\Psi \cos \Delta \right]^{2}} \right]$$
$$2n_{1}k_{1} = \frac{n_{0}^{2} \sin^{2} \phi \tan^{2} \phi \sin 4\Psi \sin \Delta}{\left[1 + \sin 2\Psi \cos \Delta \right]^{2}}$$

Transmission / Absorption

Definition

 Absorption - the loss of a photon from an incident flux by the process of exciting an electron from a lower- to a higher-energy state

General Scheme

- Light is incident on a thin sample part of the light is reflected and the remainder is absorbed or transmitted; a measurement is made of the transmitted intensity
- The experiment can be carried out as a function of temperature, externally applied fields, sample thickness, etc.

Transmission

- Optical transmission measurements
 - Sample thickness
 - Absorption coefficient
 - Impurities in semiconductors (oxygen and carbon in Si)

Advanced Semiconductor Technology Facility

Transmission

$$T = \frac{(1-R)^2 e^{-\alpha d}}{1+R^2 e^{-2\alpha d} - 2R e^{-\alpha d} \cos \phi}$$

$$T = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{(1-R)^2 e^{-\alpha d}}{1+R^2 e^{-2\alpha d} - 2R e^{-\alpha d} \cos \phi} d\phi$$

If detector has insufficient resolution

$$T = \frac{(1-R)^2 e^{-\alpha d}}{1-R^2 e^{-2\alpha d}}$$

If α = **0**

$$T = \frac{(1-R)^2}{1+R^2 - 2R\cos\phi}$$
$$T = \frac{(1-R)^2}{1-R^2} = \frac{1-R}{1+R}$$

Transmission

Gives absorption coefficient, impurity density (e.g., oxygen, carbon in Si), thickness

ECE 4813 Dr. Alan Doolittle

 $\Delta(1/\lambda)$

Thickness

Oscillations are determined by

 $\cos 4\pi n d / \lambda;$

Has maxima at

$$d = \frac{m\lambda_0}{2n}; d = \frac{(m+1)\lambda_1}{2n}....d = \frac{(m+i)\lambda_i}{2n}$$

$$\Rightarrow \boldsymbol{m} = \frac{\boldsymbol{n}_{i}}{\boldsymbol{\lambda}_{o} - \boldsymbol{\lambda}_{i}}$$

$$d = \frac{1\lambda_0\lambda_i}{2n(\lambda_0 - \lambda_i)} = \frac{i}{2n(1/\lambda_i - 1/\lambda_0)}$$

 $1/\lambda$: Wave number

For
$$i = 1$$
: $d = \frac{1}{2n(1/\lambda_1 - 1/\lambda_0)} = \frac{1}{2n\Delta(1/\lambda_1)}$

Instrumentation

Two types of instruments are used

Interferometer

- Let source be cos2π*fx*
 - f: frequency of light
 - x: movable mirror location
- $L_1 = L_2$
 - Constructive interference
 - Maximum detector output
- $L_1 = L_2 + \lambda/4$
 - Destructive interference
 - Zero detector output

Fourier Transform Infrared Spectroscopy

Fourier transform infrared spectroscopy (FTIR)

 $I(x) = B(f)[1 + \cos 2\pi xf] \qquad I(x) = \int_0^f B(f)[1 + \cos 2\pi xf]df$ $I(x) = \int_0^{f_1} A\cos 2\pi xf \, df = Af_1 \frac{\sin 2\pi xf_1}{2\pi xf_1}$

ECE 4813 Dr. Alan Doolittle

Interferogram - Spectrum

www.chem.orst.edu/ch361-464/ch362/irinstrs.htm

FTIR Applications

 Determine oxygen and carbon density by transmission dip

Reflection

- Reflection measurements
 - Film thickness
 - Reflectivity

$$R = \frac{r_1^2 e^{\alpha d_1} + r_2^2 e^{-\alpha d_1} + 2r_1 r_2 \cos \phi_1}{e^{\alpha d_1} + r_1^2 r_2^2 e^{-\alpha d_1} + 2r_1 r_2 \cos \phi_1}$$

$$r_{1} = \frac{n_{0} - n_{1}}{n_{0} + n_{1}}; r_{2} = \frac{n_{1} - n_{2}}{n_{1} + n_{2}}$$
$$\phi_{1} = \frac{4\pi n_{1} d_{1} \cos \phi'}{\lambda}$$
$$\phi' = \sin^{-1} \left[\frac{n_{0} \sin \phi}{n_{1}} \right]$$

Georgia Tech

Reflection Examples

http://sol.sci.uop.edu/~jfalward/refraction/refraction.html

Total Internal Reflection

- **Snell's law:** $n_0 \sin \theta_0 = n_1 \sin \theta_1$
- For $\theta_1 = \theta_c = \sin^{-1}(n_0/n_1)$ (critical angle) ⇒ $\theta_0 = 90^\circ$ ◆ Total internal reflection

Reflection

- R versus λ yields plots with *unequal* wavelength spacings
- *R* versus 1/λ (wavenumber) gives equal spacings

$$\lambda(\max) = \frac{2n_1d_1\cos\phi'}{m}$$
$$m = 1, 2, 3...$$
$$d_1 = \frac{i\lambda_0\lambda_i}{2n_1(\lambda_i - \lambda_o)\cos\phi'}$$
$$= \frac{i}{2n_1(1/\lambda_0 - 1/\lambda_i)\cos\phi'}$$

i: number of complete cycles from λ_0 to λ_i

Advanced Semiconductor Technology Facility

Reflection FTIR Applications

FTIR is used in may solid state and chemical applications

www.mee-inc.com/ftir.html#analytical

Line Width

- Scatterometry uses scattered or diffracted light
- From diffracted signature can determine
 - Line height
 - Line width
 - Corner rounding
 - Sidewall slope/angle
- Special test structure

C.J. Raymond in *Handbook of Si Semiconductor Metrology* (A.C. Diebold, ed.) Marcel Dekker, 2001.

Luminescence

Luminescence is the emission of light due to:

- Incandescence: energy supplied by heat
- Photoluminescence: energy supplied by light
- Fluorescence: energy supplied by ultraviolet light
- Chemiluminescence: energy supplied by chemical reactions
- Bioluminescence: energy supplied by chemical reactions in living beings
- Electroluminescence: energy supplied by electric current/voltage
- Cathodoluminescence: energy supplied by electron beams.
- Radioluminescence: energy supplied by nuclear radiation
- Phosphorescence: delayed luminescence or "afterglow"
- Triboluminescence: energy supplied by mechanical action
- Thermoluminescence: energy supplied by heat

Photoluminescence

Incident laser creates electron-hole pairs (ehp)
When the ehp recombine, they emit light

How Does PL Work And How Can It Be Used?

- Carrier generation depth
 - Wavelength ⇒ depth information
- Recombination
 - Shockley-Read-Hall (impurities) ⇒ impurity information
 - Auger (high carrier densities) ⇒ doping density information
 - Surface (surface states, impurities) ⇒ surface information
 - Radiative (light emission) ⇒ detection mechanism

Advanced Semiconductor Technology Facility

Georgia Tech Depth Dependent PL Signals

Advanced Semiconductor Technology Facility

Review Questions

- What determines the resolution limit in conventional optical microscopy?
- What is near field optical microscopy?
- What are the basic elements of ellipsometry?
- How does FTIR work?
- Where are transmission measurements used?
- Where are reflection measurements used?
- What is luminescence?
- How can photoluminescence be used in Si characterization?