

ECE 4813

Semiconductor Device and Material Characterization

Dr. Alan Doolittle School of Electrical and Computer Engineering Georgia Institute of Technology

As with all of these lecture slides, I am indebted to Dr. Dieter Schroder from Arizona State University for his generous contributions and freely given resources. Most of (>80%) the figures/slides in this lecture came from Dieter. Some of these figures are copyrighted and can be found within the class text, *Semiconductor Device and Materials Characterization*. <u>Every serious</u> *microelectronics student should have a copy of this book!*

ECE 4813 Dr. Alan Doolittle

Ion Beam Characterization

Secondary Ion Mass Spectrometry Rutherford Backscattering

Ion Beam Characterization

Advanced Semiconductor Technology Facility

Secondary Ion Mass Spectrometry

Secondary Ion Mass Spectrometry

- Secondary ion mass spectrometry (SIMS) is the most common doping profile method
- Principle: Atoms sputtered from the sample; mass of the ejected ions analyzed

• Ion mass \Rightarrow element identification; ion intensity \Rightarrow element density

- Advantages: Gives depth profiles. Can analyze all elements; most sensitive of all analytical techniques. Can measure several impurities simultaneously
- Limitations: Destructive method. Subject to matrix effect: ion yields influenced by a change in surface composition. Need standards for concentration determination, independent depth measurement
- Sensitivity: Depends on impurity. Highest sensitivity is boron in Si at ~ 10¹⁴ cm⁻³; all other elements less sensitive. Sensitivity limited by interference from ions of similar mass/charge

SIMS

- Ion count ⇒ density: use calibrated standard
- Time ⇒ depth: measure depth of crater

Time-of-Flight SIMS (TOF-SIMS)

- Pulsed ion beam sputters the sample
- Ion time of flight is measured
- Measure transit time ⇒ charge/mass ratio
- Low beam current ⇒ low sputtering rate
- Suitable for organic surface contamination
- Sensitive for low metallic contamination (~ 10⁸ cm⁻²)

M.A. Douglas and P.J. Chen, "Quantitative Trace Metal Analysis of Si Surfaces by TOF-SIMS," *Surf. Interface Anal.* **26**, 984-994, Dec. 1998.

TOF-SIMS Example

www.llnl.gov/str/Hamza.html

- Bond pad failure; covered with siloxane
- Siloxane mapped distinctly from elemental Si

Bonding pad with poor wire bond

www.materialinterface.com/surface5.html ECE 4813 Dr. Alan Doolittle

Rutherford Backscattering (RBS)

The incoming ping pong ball loses the most energy when it is scattered from which of the four balls?

- He ions with several MeV energy are scattered by the sample atoms
- The mass of the sample atom is determined from the energy of the scattered ions

Ion Scattering

Conservation of *energy*

$$E_0 = M_1 v_0^2 / 2 = E_1 + E_2 = M_1 v_1^2 / 2 + M_2 v_2^2 / 2$$

Conservation of momentum

Parallel : $M_1v_0 = M_1v_1\cos\theta + M_2v_2\cos\phi$ Perpendicular : $0 = M_1v_1\sin\theta - M_2v_2\sin\phi$

Eliminating
$$\phi$$
 and $v_2 \quad \frac{v_1}{v_0} = \frac{\pm \sqrt{M_2^2 - M_1^2 \sin^2 \theta} + M_1 \cos \theta}{M_1 + M_2}$
For $M_1 < M_2$, use "+" $\frac{E_1}{E_0} = \left(\frac{\sqrt{M_2^2 - M_1^2 \sin^2 \theta} + M_1 \cos \theta}{M_1 + M_2}\right)^2$

ECE 4813 Dr. Alan Doolittle

- He ions of 2-3 MeV are scattered; energy loss gives information
- Nondestructive
- Good for heavy elements on light substrate, *e.g.*, silicides
- Sensitivity ~ 10¹⁸ 10¹⁹ cm⁻³
- K: kinematic factor
- $= R = M_1/M_2$

E. Rutherford

RBS works best for heavy elements on light substrates

RBS works best for heavy elements on light substrates

Advanced Semiconductor Technology Facility

Rutherford Backscattering

Channeling

He ions are scattered more when they are not channeled

Thickness Measurements

Thickness determined by measuring the various energies

$$E_3 = K_1 E_0; E_2 = K_1 (E_0 - \Delta E_{in}) - \Delta E_{out}$$
$$\Delta E = E_3 - E_2 = K_1 \Delta E_{in} + \Delta E_{out} = [S_0]d$$
$$[S_0]: \text{ backscattering energy loss factor (eV/Å)}$$

$$\boldsymbol{E}_{1} = \boldsymbol{K}_{2} (\boldsymbol{E}_{0} - \Delta \boldsymbol{E}_{in}) - \Delta \boldsymbol{E}_{out}$$

Advanced Semiconductor Technology Facility

Silicide Formation

RBS is ideal for measuring the formation of silicides

M.A. Nicolet et al. Science, 177, 841 (1972)

RBS Examples

M.A. Nicolet et al. Science, 177, 841 (1972)

Review Questions

- What is the main application for SIMS?
- What is the principle for RBS?
- What is TOF-SIMS?
- What is channeling?
- How are the SIMS vertical and horizontal data converted?