

ECE 4813

Semiconductor Device and Material Characterization

Dr. Alan Doolittle School of Electrical and Computer Engineering Georgia Institute of Technology

As with all of these lecture slides, I am indebted to Dr. Dieter Schroder from Arizona State University for his generous contributions and freely given resources. Most of (>80%) the figures/slides in this lecture came from Dieter. Some of these figures are copyrighted and can be found within the class text, *Semiconductor Device and Materials Characterization*. <u>Every serious</u> *microelectronics student should have a copy of this book!*

Resistivity Sheet Resistance

Four-point Probe Semiconductor Resistivity Wafer Mapping van der Pauw Eddy Current Modulated Photoreflectance Conductivity Type

Graphs and Plots

 When two variables, e.g., resistivity and doping density, vary over many orders of magnitudes (decades) it is best to plot log - log

$$y = \frac{1}{6.4 \, x 10^{-17} \, x}$$

Graphs and Plots

Plotted on a Log Scale then Analyzed

Advanced Semiconductor Technology Facility

Graphs and Plots: Example

100

$$y = Ke^{x/x_{1}}$$
What are K and x_{1} ?
$$y = log K + \frac{x/x_{1}}{ln10}$$

$$\begin{bmatrix} recall \rightarrow \log y = \frac{\ln y}{ln10} \end{bmatrix}$$

$$Slope = \frac{d(\log y)}{dx} = \frac{1}{x_{1}\ln 10} = \frac{1}{2.3x_{1}}$$

$$y = \frac{1}{x_{1}\ln 10} = \frac{1}{2.3x_{1}}$$

$$y = \frac{1}{x_{1}\ln 10} = \frac{1}{x_{1}\ln 10}$$

always presented in a Log10 basis.

Kelvin Measurements

- Kelvin measurements refer to 4-probe measurements
- Two probes:

The four point probe is used to determine the resistivity and sheet resistance

- Derivation of the basic four point probe equation
- Assumption: Current flows out radially from infinitesimal probe tip

Voltage Due to a Single Probe

$$V = IR; \ \varepsilon = J\rho = -\frac{dV}{dr}; \ J = \frac{I}{A} = \frac{I}{2\pi r^2}$$
$$\int_{0}^{V} dV = -\frac{I\rho}{2\pi} \int_{\infty}^{r} \frac{dr}{r^2} \Rightarrow V = \frac{I\rho}{2\pi r}$$

Voltage Due to Two Probes

$$V = \frac{l\rho}{2\pi r_1} - \frac{l\rho}{2\pi r_2}$$
$$V = \frac{l\rho}{2\pi} \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

For four *in-line* probes

$$V_{2} = \frac{l\rho}{2\pi} \left(\frac{1}{s} - \frac{1}{2s} \right); \quad V_{3} = \frac{l\rho}{2\pi} \left(\frac{1}{2s} - \frac{1}{s} \right)$$
$$V = V_{23} = V_{2} - V_{3} = \frac{l\rho}{2\pi} \left(\frac{1}{s} - \frac{1}{2s} - \frac{1}{2s} + \frac{1}{s} \right) = \frac{l\rho}{2\pi s}$$

$$\rho = 2\pi s \frac{V}{I} \Omega - cm$$

Since wafers are not infinite in extent, need to correct for

- Conducting/non-conducting bottom boundary
- Wafer thickness
- Nearness to wafer edge
- Wafer size

For non-conducting bottom surface boundary

$\mathbf{F} = \mathbf{F}_1 \mathbf{F}_2 \mathbf{F}_3$

- F₁ corrects the sample thickness
- F₂ corrects the lateral dimensions (F₂~1if wafer size is ~40 times S)
- F₃ corrects the probe to edge (d) placement errors (~1 if d>2S)

$$\rho = 2\pi \mathbf{sF} \frac{\mathbf{V}}{\mathbf{I}} (\mathbf{\Omega} \cdot \mathbf{cm})$$

$$F_1 = \frac{t/s}{2\ln[\sinh(t/s)/\sinh(t/2s)]}$$

10²

Resistivity

10⁴

Advanced Semiconductor Technology Facility

Thin Layers

Consider a thin film on an insulator

- Metal layer on insulator
- Poly-Si layer on insulator
- n on p or p on n

$$F_1 = \frac{t/s}{2\ln[\sinh(t/s)/\sinh(t/2s)]}$$

Usually *t*<<*s*

Recall sinh $x \cong x$ for x <<1

$$\therefore F_1 \approx \frac{t/s}{2\ln(2)}$$

$$\rho = 2\pi s \frac{t/s}{2\ln 2} \frac{V}{I} = \frac{\pi}{\ln 2} t \frac{V}{I} = 4.532t \frac{V}{I}$$

ρ

What Is Sheet Resistance?

The resistance between the contacts is

$$R = \frac{\rho L}{A} = \frac{\rho}{t} \frac{L}{W} \text{ ohms}$$

- L/W has no units
- ρ/t should have units of ohms
- But . . . *R* ≠ ρ/*t* !
- Sheet resistance $R_{sh} = \rho/t$ (ohms/square)

$$R = (R_{sh}) x (number of squares) [ohms]$$

Resistance independent of the size of the square

Sheet Resistance

$$\rho = \frac{\pi}{\ln 2} t \frac{V}{I}$$

Frequently you do not know t.

- Ion implanted layer
- Diffused layer
- Metal film
- Poly-Si layers
- Define sheet resistance R_{sh}
- For uniformly-doped layer

$$R_{sh} = \frac{\rho}{t} = \frac{1}{\sigma t} = \frac{\pi}{\ln 2} \frac{V}{I}$$

Dual Configuration (or Switched Configuration)

- Measurement 1: Current in 1 & out 4 and voltage measured on 2 and 3. Directions then reversed.
- Measurement 2: Current in 1 & out 3 and voltage measured on 2 and 4. Directions then reversed.
- Advantages:
 - Probes can be oriented in any direction (no need to be parallel or perpendicular to the wafer radius or edges)
 - Lateral dimensions no longer needed
 - Self-correcting for changes in probe spacing

$$R_{SH} = -14.696 + 25.173 \frac{R_a}{R_b} - 7.872 \left(\frac{R_a}{R_b}\right)^2$$
$$R_a = \left(\frac{\frac{V_{f23}}{I_{f14}} + \frac{V_{r23}}{I_{r14}}}{2}\right) \qquad R_b = \left(\frac{\frac{V_{f24}}{I_{f13}} + \frac{V_{r24}}{I_{r13}}}{2}\right)$$

 $1 \begin{array}{c} 2 \\ V \\ 1 \end{array} \begin{array}{c} 4 \\ I \\ I \end{array} \end{array}$

Wafer Mapping

TABLE 1.1 Mapping rechniques for fon implantation Onnormity Measurements.					
	Four-Point Probe	Double Implant	Spreading Resistance	Modulated Photoreflectance	Optical Densitometry
Туре	Electrical	Electrical	Electrical	Optical	Optical
Measurement	Sheet	Crystal	Spreading	Crystal	Polymer
	Resistance	Damage	Resistance	Damage	Damage
Resolution (µm)	3000	3000	5	1	3000
Species	Active	Active, Inactive	Active	Inactive	Inactive
Dose Range (cm ⁻²)	$10^{12} - 10^{15}$	$10^{11} - 10^{14}$	$10^{11} - 10^{15}$	$10^{11} - 10^{15}$	$10^{11} - 10^{13}$
Results	Direct	Calibration	Calibration	Calibration	Calibration
Relaxation	Minor	Serious	Minor	Serious	Serious
Requires	Anneal	Initial Implant	Anneal		Measure before and after

TARLE 11 Manning Tachniques for Ion Implantation Uniformity Massuraments

Wafer Maps

 Measure sheet resistance; generate and plot contour maps (lines of equal sheet resistance)

Si-doped Al *R_{sh,av}* = 80.6 mΩ/square 1% Contours

Epitaxial Si R_{sh,av} = 18.5 kΩ/square 1% Contours B-implanted Si R_{sh,av} = 98.5 Ω/square 1% Contours

Sheet Resistance

For non-uniformly doped layers

Sheet Resistance

 Sheet resistance R_{sh} depends on the total number of implanted or diffused impurities and on the layer thickness

van der Pauw Measurements

- Instead of a four-point probe, one can use an arbitrarily shaped sample
 - Current flows through two adjacent contacts
 - Voltage is measured across the other two contacts

$$\rho = \frac{\pi t}{\ln 2} F\left(\frac{R_{12,34} + R_{23,41}}{2}\right); R_{12,34} = \frac{V_{34}}{I_{12}}; R_{23,41} = \frac{V_{41}}{I_{23}}$$

van der Pauw Measurements

F function is determined from

For symmetrical samples, *e.g.*, circles or squares, F = 1

$$\rho = \frac{\pi t}{\ln 2} R_{12,34}; R_{sh} = \frac{\pi}{\ln 2} R_{12,34}$$

Precautions

- For copper metallization barrier layers are used to prevent Cu from diffusing into SiO₂ or Si
- Barrier layers have negligible effect on sheet resistance R_{sh} measurement of thick conductor films
- Chemical-mechanical polishing (CMP) dishing does affect *R*_{sh} measurements

T. Turner, "Cu-Linewidth Resistivity Measurements," Solid State Technol. 43, 89-96, April 2000

Line Width

Cross bridge test structure

Used to determine line width W

Anodic Oxidation / van der Pauw

- Place wafer into electrolyte
- Apply constant current, measure voltage
- Oxide grown anodically at room temperature
- Oxide growth consumes Si
- When oxide is etched, Si is removed
- Measure sheet resistance

Advanced Semiconductor Technology Facility

Anodic Oxidation / van der Pauw

Eddy Current - Contactless

- An oscillating circuit induces time-varying magnetic fields leading to *eddy currents* in the wafer \Rightarrow resulting loss is proportional to the *sheet resistance* R_{sh}
 - Sheet resistance
 - Conductor thickness: $t = \rho_{meta} / R_{sh}$, measure metal sheet resistance R_{sh} , know metal resistivity ρ_{metal}

Advanced Semiconductor Technology Facility

Four Point Probe / Eddy Current

Modulated Photoreflectance

- Pump laser heats semiconductor locally ⇒ small reflectivity change of the wafer ⇒ measured by the probe beam
- Ion-implanted samples:
 - No post-implant annealing required
 - Signal ~ implant dose
 - High spatial resolution (few µm)
 - Can measure implanted patterns
 - Bare and oxidized wafers
 - Non-contact, non-destructive

Advanced Semiconductor Technology Facility

Modulated Photoreflectance

B in Si, 30 keV, 8x10¹⁰ cm⁻², contour intervals: 1%

Courtesy A.M. Tello, Xerox Microelectronics Center

Conductivity Type

Hot Probe

$$\boldsymbol{v}_{th} = \sqrt{\frac{3kT}{m^*}} \sim \sqrt{T}$$

Where \boldsymbol{v}_{th} is the thermal velocity of the carrier

- Electrons move away from hot probe
- Positive donor ions left behind
- For *n*-type: V_{hot} > 0
- For *p*-type: V_{hot} < 0</p>
- Thermoelectric power

 $J_n = \mu_n n dE_{Fn} / dx - q\mu_n nP_n dT / dx$

• When you are at ~open circuit (i.e measuring voltage) $J_n \cong 0 \Rightarrow dE_{Fn} / dx = qP_n dT / dx$

 P_n is differential thermoelectric power (<0)

Warnings

- Hot Probe Warnings:
 - Works for ~10⁻³ to ~10³ ohm-cm
 - Above ~10³ ohm-cm, p-type will likely read as n-type (due to you actually measuring nµ_n and pµ_p not n and p)
 - High resistivity materials need very high input impedance voltmeter (electrometer type).
- Resistivity Warnings:
 - Watch out for surface depletion
 - Especially serious in compound semiconductors
 - Thermal variations due to drive currents
 - Follow NIST standards for power levels
 - Fermi-level pinned surfaces (InN for example)
 - Whenever possible, keep drive voltages small (V<kT/q) so contact nonlinearities are not important. Otherwise <u>CHECK CONTACT LINEARITY!</u>

$$I = I_o \left(e^{\left(\frac{qV}{kT}\right)} - 1 \right)$$
$$I \sim I_o \left(\frac{qV}{kT}\right) \text{ for } V \ll \left(\frac{qV}{kT}\right)$$

Review Questions

- What is the best way to plot power law data?
- What is the best way to plot exponential data?
- Why is a four-point probe better than a two-point probe?
- Why is resistivity inversely proportional to doping density?
- What is an important application of wafer mapping?
- Why is a four-point probe better than a two-point probe?
- Why is sheet resistance commonly used to describe thin films?
- What is the main advantage of Eddy current measurements?
- What are advantages and disadvantages of the modulated photoreflectance (therma wave) technique?