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Doping Profiling 
 Secondary Ion Mass Spectrometry 

Spreading Resistance 
Capacitance – Voltage 

Threshold Voltage 
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Secondary Ion Mass Spectrometry 
 SIMS is the most common doping profiling technique 
 Incident ions knock out atoms and ions from the substrate 
 The mass of these ions is analyzed 
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Secondary Ion Mass Spectrometry 
 The use of Cs or O results in a modification of the surface 

work function (low work function for Cs and high for O) 
producing either + or – ions. 

BSi

Cs, O Mass
Analyzer

 Charging of the sample can effect 
both the sputter yield (changes 
the acceleration energy) and the 
focus into the mass analyzer 
 Can be offset by an electron flood gun 

for –ions and a +H source (rarely used) 
for +ions 
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Secondary Ion Mass Spectrometry 
 Mass Spectra can be obtained 
 Depth Profiling can be obtained 
 Time of Flight Versions Dominate technology now 
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Secondary Ion Mass Spectrometry 
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Secondary Ion Mass Spectrometry 



ECE 4813 Dr. Alan Doolittle 

Secondary Ion Mass Spectrometry 
 While rarely used in simple SIMS analysis, energy spectrums 

for sputtered ions can tell you a great deal about the sample 
including in-situ resistivity analysis 

 Care must be taken since SIMS often measures charge to 
mass ratio.  Time of Flight SIMS analyzers correct this 
problem. 
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Spreading Resistance 
 The wafer is bevelled extending the layer thickness 
 Compare R to calibrated standards; Rsp dominates 
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Spreading Resistance 
 The spreading resistance of ideal metal-

semiconductor contacts can be calculated 
 For flat-bottom probe of diameter d 

 
 

 For hemispherical probe of radius r 
 
 

 For a “real” probe 
 
 

k must be experimentally determined 
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Spreading Resistance 
 Spreading resistance is measured and 

converted to resistivity and NA or ND profiles 
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Capacitance-Voltage 
 Capacitance-voltage measurements used for 

Doping profiling 
Flatband voltage, oxide charge etc. in MOS devices 
Capacitance is a measured charge responding to a time varying voltage 

Actual capacitance meters use ac current amps with phase-sensitive 
detectors to measure “in phase” and “out of phase” components. 
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Capacitance-Voltage 
 Need a device with a space-charge region 

Schottky diode, pn junction, MOS-C, MOSFET 
 The dc bias, V, determines W 
 The ac bias, vi, measures the capacitance 
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Capacitance - Voltage 
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Capacitance - Voltage 
 What to use? 
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Capacitance - Voltage 
 C - V curves are always nonlinear 
 1/C2 - V curves clearly show carrier or doping 

density non-uniformities 
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Capacitance - Voltage 
 C - V curves can determine channel depths in 

compound semiconductors 
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MOS Capacitance - Voltage 
 Oxides (insulators) in series with the junctions 

create an additional fixed capacitor. 
 

Coxide = εA/tox 
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MOS Capacitance 
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MOS Capacitance 
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 Oxides (insulators) in series with the junctions create 
an additional fixed capacitor. 

 Capacitance approaches the Cox in accumulation. 
 More MOS in chapter 8… 
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Max-Min MOS Capacitance 
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 Measure the maximum accumulation Capacitance 
(high frequency measurement) and the minimum 
capacitance in strong inversion 
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 Clf = Low frequency capacitance where the 
measurement frequency is small enough such that 
the carriers can respond to the stimulus.  Sweep 
rate of bias is also slow. 

 Chf = High frequency capacitance where the 
carriers cannot respond to the stimulus. Sweep rate 
of bias is also slow. 

 Cdd = When the bias sweep rate is faster than 
generation rate such that inversion cannot take 
place.  Typically also measured with a high 
frequency stimulus. 
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Built-In Voltage Determination from 
Capacitance-Voltage 

 The intercept of the C-V curve can determine the VBI 

 In practice, care should be exercised as in practice the ohmic- 
contacts (particularly the “back contact”) can lead to errors in 
the determination of VBI 
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Contactless C - V 
 Contact C-V measurements  

 pn junctions 
 Evaporated metal Schottky diodes 
 Mercury Schottky diodes 
 MOS capacitors 

 Can also be implemented contactless 
 Compressed air escapes through porous 

disc; air cushion forms between electrode 
and semiconductor surface 
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Contactless C -V 
 Contact diameter ~ 

1 mm 
 Need calibrated 

standard wafer 
 Can be used on 

product wafers 
 Gives doping 

profiles 
 Used mainly by 

wafer 
manufacturers 

150 mm wafer 

Ω-cm 
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Contactless C -V 

 Hg probe 
 Liquid metal 

contacts 
 Some “contact” 

occurs so some 
concern for 
contamination (in 
production) exists. 

 Insulating 
substrates can be 
used (not shown) 
 Two series 

capacitors, one being 
substantially larger 
than the other 

 
 

Photo from MDC Corporation 

Photo from SSM 
Corporation 
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Electrochemical C -V 

 Simultaneously 
performs CV 
analysis while 
electrochemically 
etching the 
semiconductor 

 Holes needed for 
etching 
 P-type is easy 
 N-type needs light to 

generate holes 

 Works best with 
direct bandgap 
semiconductors but 
is used with Si 
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What Is Measured ? 

 The previous equations 
indicate the doping 
profile is measured 

 The entities that respond 
to the ac voltage are the 
majority carriers, not the 
dopant atoms 

 Detailed modeling has 
shown that the majority 
carrier profile is 
measured 

Debye Length≡ a measure of the 
distance over which a charge 
imbalance is neutralized by majority 
carriers (under steady state conditions).  
The Debye length sets the spatial limit 
(resolution) of an electrically measured 
profile. 
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Debye, Thomas-Fermi or Other Limit? 
 You will hear physicists often using the “Thomas-Fermi” length as a 

resolution limit instead of the Debye length – why? 
 Both are a measure of the distance over which a charge imbalance is neutralized 

by majority carriers (under steady state conditions).  The Debye length sets the 
spatial limit (resolution) of an electrically measured profile. 
 Debye Length valid for non-generate semiconductors at any temperature 

 
 
 

 Thomas-Fermi Screening Length is valid for degenerate semiconductors and metals 
and is strictly valid only at low temperatures (but is more generally applied at all 
temperatures) 
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What Is Measured ? 
 C-V and VT profiling methods determine the carrier density, 

not necessarily the doping density 
 For uniformly doped material: p = NA, n = ND 

 For non-uniformly doped material: p ≠ NA, n ≠ ND 
 
 
 
 
 
 
 
 

 Important Limitation:  When the contact area becomes 
comparable to the depletion width, a simple parallel plate 
capacitor model cannot be used.  A 3D solution is needed. 

W.C. Johnson and P.T. Panousis, “The Influence of Debye Length on the C-V Measurement  
Doping Profiles,” IEEE Trans. Electron Dev. ED-18, 965-973, Oct. 1973. 
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Series Resistance 

Device As Seen By C Meter 

 Cp, Cs, Gp and Rs are all capacitance meter measured values. 
 Series connection is preferred if series resistance is important! 
 Never trust a Capacitance measurement with a quality factor (Q=ωC/G) < 5. 
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“Deep” Concerns 
 When an acceptor or defect energy is deep in the bandgap a concern 

as to whether the carriers can adequately respond to the ac stimulus 
is warranted. 
 

 If for a p-type material with (for example) a deep acceptor at EA eV 
above the valance band, 
 
 
 
 
 

 So for  0.16 eV deep acceptor (In in Si or Mg in GaN), τemission~ 0.5 uS 
(~5 x [1/ω] for a 1MHz signal). τemission increases by a factor of ~10 
when EA=0.22 eV.  
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Series Resistance 
 If more than 2 parameters are needed, then more than one frequency will be 

required. 
 
 
 

 There are limits to the 2-frequency technique and cautions should be 
exercised to insure measurements are valid.  The reader is encouraged to 
examine Agilent application note 4294-3 : “Evaluation of MOS Capacitor Oxide 
C-V Characteristics Using the Agilent 4294A”, section 7. 
 

 MAIN POINT: LEAKAGE CURRENT CAN LOWER APPARENT CAPACITANCE 
AND IS BIAS DEPENDENT – HUGE ERRORS! 
 Thin dielectrics 
 Semiconductors with inverted surfaces 
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MOSFET Threshold Voltage 
 Based on I-V not C-V so the technique scales better. 
 The threshold voltage, VT, dependence on substrate bias 

can be used to determine the doping profile under the gate 
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MOSFET Threshold Voltage 
 Measure VT as a function of back bias VB 
 Assume a value for 2φF , say 0.6 V; plot VT vs. (2φF +VB)1/2 
 Find NA from the slope,  
 Use this NA to then find a new 2φF and replot VT vs. (2φF +VB)1/2 
 One or two iterations are sufficient 
 Find density NA and depth W and plot the profile 

D. Feldbaumer and D.K. Schroder, “MOSFET Doping Profiling,” 
 IEEE Trans. Electron Dev. 38, 135-140, Jan. 1991. 
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Profiling Limits 
 There are two limits 

Close to surface 
Junction breakdown 
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Review Questions 
 What is secondary ion mass spectrometry? 
 Name a disadvantage of spreading resistance 

profiling. 
 How is the capacitance measured? 
 Why is 1/C2 - V preferred over C – V? 
 What is important in contactless C – V? 
 What is measured in most profiling techniques, 

i.e., doping density or majority carrier density? 
 What is the Debye length? 
 What does series resistance do? 
 How does the threshold voltage technique work? 
 What determines the profiling limits? 
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