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Doping 
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Photoluminescence 
Hall Measurements 
Magnetoresistance 

Time of Flight 
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Plasma Resonance and Reflectivity 
Minimum 

 Electron/hole plasmas are ensembles of free carriers that 
can, at certain frequencies, oscillate in concert as a group. 

 Such a plasma resonance exists whose frequency / 
wavelength (ν=c/λ) is determined by the free carrier 
density. 
 
 

 Good for p (or n) > ~1018 cm-3 
 Since plasma resonances are hard to detect in practice, 

most of the time, free carrier densities are determined by 
empirical reflectivity minimums… 
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Free Carrier Absorption 
 Free carrier absorption occurs within the conduction or 

valance band (not between). 
 For example a conduction electron is absorbs an IR photon and is promoted 

into a higher energy state still inside the conduction band 

 
 
 
 
 

 In practice, empirical fitting is used 
 
 

 
 Generally measured using Fourier Transmission Infrared (FTIR) 

Spectrometer 
 Good for p (or n) > ~1017 cm-3  
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Infrared Spectroscopy 
 Measures dopant concentrations (low 

temperature) and can be used at room 
temperature to measure free carrier 
absorption. 

 Cryogenic temperatures are used to 
freeze carriers into their dopant 
ground state 

 IR (very small energy) light is used to 
excite electrons/holes into their 
dopant “excited state” creating sharp 
absorption lines 

 Absorption line intensity is calibrated 
to dopant density 
 

 Good for NA (or ND) > ~1011 cm-3 
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Interferometer 
 Let source be cos2πfx 

 f: frequency of light 
x: movable mirror location 

 L1 = L2 
Constructive interference 
Maximum detector output 

 L1 = L2 + λ/4 
Destructive interference 
Zero detector output 
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Fourier Transform Infrared Spectroscopy 

 Fourier transform infrared spectroscopy (FTIR) 
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Interferogram - Spectrum 

Interferogram 

www.chem.orst.edu/ch361-464/ch362/irinstrs.htm 

Spectrum 
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FTIR Applications 

 Determine oxygen 
and carbon density 
by transmission dip 
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Mobilities 
 Conductivity Mobility:  µp=1/qpρ 

Majority  carrier mobility; need carrier concentration and 
resistivity 

 Drift Mobility: µp = vd/ε 
Minority  carrier mobility 
Need  drift velocity and electric field (Haynes-Shockley 

experiment) 
 Hall Mobility:  µH = RH/ρ 

Need Hall measurement 
Hall mobility does not necessarily equal conductivity mobility 

 MOSFET Mobility: 
MOSFET mobility lowest, carriers are scattered at the Si-SiO2 

interface 
 Interface is microscopically rough 
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Mobility 
 Electron/hole mobility is a measure of 

carrier scattering in the semiconductor 
Lattice scattering 

 Silicon atoms 
 Ionized impurity scattering 

 Dopant atoms 
 Interface scattering 

 Surface roughness at SiO2/Si interface 
 Polar scattering 

 Silicon bulk 
µn ≈ 3 µp 

MOSFET mobility (effective                                                
mobility) ≈ 0.3 bulk mobility 

Courtesy of M.A. Gribelyuk, IBM. 
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Mobilities 
 For bulk semiconductors, 

lattice and ionized impurity 
scattering dominate the 
mobility 
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“Simple” Hall Effect 
 Hall effect is commonly used during the development of new 

semiconductor material 
 

 Resistivity, carrier concentration AND mobility can all be 
determined simultaneously 
 

 Lorentz Force – deflection of free carriers by an applied 
magnetic field 
 

 Temperature dependent Hall is very powerful and can elucidate 
scattering mechanisms (plotting mobility vs Ta), and determine 
dopant activation energies 
 Compensated Dopant Freeze out regime – Arrhenius slope results in EA 
 Uncompensated Dopant Freeze out regime – Arrhenius slope results in EA/2 
 At moderate temperatures, p~ (NA- ND) 
 At elevated temperatures, p ~ ni  
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“Simple” Hall Effect 
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“Simple” Hall Effect 
 Resistivity is simply found from the voltage drop 

along the length (no magnetic field), 
 
 

 Carrier density 
 
 

 Mobility 
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Detailed Hall Effect 
 The Hall Coefficient for both electrons and holes 

present in the same material is in general: 
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Detailed Hall Effect 
 The Hall Coefficient is in general: 

 
 
 
 

 At low fields (B<<1/µn)… 
 
 
 
 

 And at high fields (B>>1/µn)… 
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Two Layer Hall Effect 
 Sometimes, a semiconductor has two different 

conduction layers (surface inversion, fermi-level 
pinning, substrate layers, n-p junctions or p+/n 
or n+/n layers) 

 The Hall coefficient is then a weighted sum of 
both layers and can be either positive or 
negative leading to confusion (shown for the low 
B field limit): 
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Two Layer Hall Effect (more detail) 
 The Hall coefficient is then a weighted sum of 

both layers and can be either positive or 
negative leading to confusion: 
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Two Layer Hall Effect (more detail) 
 The Hall coefficient is then a weighted sum of 

both layers and can be either positive or 
negative leading to confusion (generally): 
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Hall Effect Measurements 
 Two approaches: 

Hall Bar (5 or 6 contacts) 
 
 
 

Van der Pauw configuration 
 Based on Conformal mapping theory 
 Contacts assumed point sources 
 Uniform thickness 
 Cannot contain isolated (interior) holes 
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1 
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Hall Effect Measurements 
Van der Pauw configuration 

 Measure resistivity first by “perimeter measurements”… 
 Example: determine R12,34 where current goes in 1 and leaves 2 and voltage is measured between 

terminals 3 and 4. Next determine R23,14 where current goes in 2 and leaves 3 and voltage is 
measured between terminals 1 and 4.  

 Use: 
 
 
 
 
 

 …where F is a symmetry term derived from conformal mapping theory 
 F is determined from: 
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Differs some from your text.  For details see 
http://www.nist.gov/pml/semiconductor/hall_resistivity.cfm 
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Hall Effect Measurements 
Van der Pauw configuration 

 Now measure the Hall voltage using “Crossing 
configurations” 
 Example: Apply the magnetic field and determine V13,24P where current goes in 1 and leaves 3 and 

voltage is measured between terminals 2 and 4. Next reverse the field and determine V13,24N again.  
 To find the sheet concentration (#/cm2) use: 

 
 
 
 
 

 …where we have intentionally left out the proportionality constant 
 In reality, 8 resistivity and eight hall voltage measurements are made 
to reduce contact related offset voltage errors resulting in an equation  
that is of the form: 
 
 
 
 
 

 See text for important sample geometry considerations (if 
ignored, significant error can result) 
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Differs some from your text.  For details see 
http://www.nist.gov/pml/semiconductor/hall_resistivity.cfm 
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Haynes - Shockley Experiment 
 Allows mobility, diffusion constant, and minority carrier 

lifetime to be determined 
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Haynes - Shockley Experiment 
 Allows mobility, diffusion constant, and minority carrier 

lifetime to be determined 
 
 
 
 
 
 

 
 If at least two lengths and two times are measured, the 

FWHM of the time plot, ∆t can be used to… 
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Haynes – Shockley Experiment 
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MOSFET Effective Mobility 
 Effective mobility determined from drain current – drain 

voltage characteristics 
 The MOSFET drain current for small VD (50 - 100 mV) is 
 
 
 Determine gd= ∆ ID/∆VD for low VD 
 Solve for µeff 
 
 
 

 
 Need gd, QN, VT 
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MOSFET Effective Mobility 

 ID-VD ⇒ gd; CGC-VG ⇒ QN; ID-VG ⇒ VT 
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MOSFET Effective Mobility 
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Review Questions 
 What are the different mobilities? 
 Why is the MOS effective mobility less than the 

bulk mobility? 
 How is µeff most commonly determined? 
 Why does the Hall mobility differ from the 

conductivity mobility 
 How does a Hall mobility measurement work? 
 How does the Haynes-Shockley experiment 

work? 
 What is determined with the Haynes-Shockley 

experiment ? 
 For what is the time-of-flight technique used? 
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