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Defects 
 Types of Defects 

Defect Etching 
Generation – Recombination 

Capacitance Transients 
Deep Level Transient Spectroscopy 
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Defects and Yield 
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Wafer Defects 
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Defect Types 
 Particles 
 Residues 
 Organics 
 Light Metals 

Alkali Metals, e.g., Na 

 Metals 
Cu*, Fe*, Cr*, Ni*, Zn, Ca, Al (* Most important?) 

 Crystal Originated Pits (COPs) 
 Surface Roughness 
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Defect Sources 
 Silicon Starting Material 
 Silicon Growth 
 Wafer Sawing, Polishing 
 Wafer Packaging, 

Shipping 
 Wafer Cleaning  
 Liquids, Gases 
 Oxidation, Diffusion 
 Photoresist 
 Ion Implantation 

 Sputter Deposition 
 Process Equipment 
 Epitaxial Growth 
 Reactive Ion Etching 
 Polymer Containers/Pipes 
 Door Hinges  
 Light Switches 
 Ball Bearings 
 People 
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Point Defects 
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Line, Plane, Volume Defects 
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Stacking Faults 
 Oxidation-induced SFs: Si 

interstitials are generated during 
oxidation and forced into the 
substrate 

 SFs can also be generated at 
substrate/epi interfaces 

Si 
Oxide 

Si 
Interstitials  

Atom planes  

(111) Si 

(100) Si 

Top View 

SF in GaAsN 
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Defect Etching 
 Certain etches attack defective regions allowing defect 

identification (etch recipes given at end of notes) 

 

D.C. Miller and G.A. Rozgonyi, “Defect Characterization by Etching, Optical Microscopy, and X-Ray Topography,” 
in Handbook on Semiconductors 3 (S.P. Keller, ed.) North-Holland, Amsterdam, 1980, 217-246. ASTM Standards  
F47 and F26, 1997 Annual Book of ASTM Standards, Am. Soc. Test. Mat., West Conshohocken, PA, 1997. 
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Defect Etching 
 Different etches attack defective regions differently 
 Can be accentuated through copper decoration 

 

Secco Wright A Defects: HF+HNO3 A Defects: HF+HNO3+H3PO4 

A Defects - Interstitials 

Secco Wright HF+HNO3 HF+HNO3+H3PO4 

1.25 mm 

D Defects - Vacancies 

Micrographs courtesy of M.S. Kulkarni, MEMC (J. Electrochem. Soc. 149, G153, Feb. 2002) 
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Defect Etch References 
[1] E. Sirtl and A. Adler, “Chromic Acid-Hydrofluoric Acid as Specific Reagents for the 

Development of Etching Pits in Silicon,” Z. Metallkd. 52, 529-534, Aug. 1961. 
[2] W.C. Dash, “Copper Precipitation on Dislocations in Silicon,” J. Appl. Phys. 27, 1193-1195, 

Oct. 1956; “Evidence of Dislocation Jogs in Deformed Silicon,” J. Appl. Phys. 29, 705-709, 
April 1958. 

[3] F. Secco d'Aragona, “Dislocation Etch for (100) Planes in Silicon,” J. Electrochem. Soc. 119, 
948-951, July 1972.  

[4] D.G. Schimmel, “Defect Etch for <100> Silicon Ingot Evaluation,” J. Electrochem. Soc. 126, 
479-483, March 1979; D.G. Schimmel and M.J. Elkind, “An Examination of the Chemical 
Staining of Silicon,” J. Electrochem. Soc. 125, 152-155, Jan. 1978. 

[5] M.W. Jenkins, “A New Preferential Etch for Defects in Silicon Crystals,” J. Electrochem. Soc. 
124, 757-762, May 1977. 

[6] K.H. Yang,“An Etch for Delineation of Defects in Silicon,” J. Electrochem. Soc. 131, 1140-1145, 
May 1984. 

[7] H. Seiter, “Integrational Etching Methods,” in Semiconductor Silicon/1977 (H.R. Huff and E. 
Sirtl, eds.), Electrochem. Soc., Princeton, NJ, 1977, pp. 187-195. 

[8] K. Graff and P. Heim, “Chromium-Free Etch for Revealing and Distinguishing Metal 
Contamination Defects in Silicon,” J. Electrochem. Soc. 141, 2821-2825, Oct. 1994. 

[9] M. Ishii, R. Hirano, H. Kan and A Ito, “Etch Pit Observation of Very Thin {001}-GaAs Layer by 
Molten KOH,” Japan. J. Appl. Phys. 15, 645-650, April 1976; for a more detailed discussion of 
GaAs Etching see D.J. Stirland and B.W. Straughan, “A Review of Etching and Defect 
Characterisation of Gallium Arsenide Substrate Material,” Thin Solid Films 31, 139-170, Jan. 
1976. 

[10] D.T.C. Huo, J.D. Wynn, M.Y. Fan and D.P. Witt, “InP Etch Pit Morphologies Revealed by Novel 
HCl-Based Etchants,” J. Electrochem. Soc. 136, 1804-1806, June 1989. 
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Impurities or Defects 
 Shallow-level impurities (dopants) - measure optically 

Photoluminescence 
Photoelectron spectroscopy 

 Deep-level impurities (metals) - measure electrically 
Deep level transient spectroscopy (DLTS) 

 Need to determine 
 Impurity density, NT 
 Impurity energy level, ET 
Capture Cross section σT 

 
Ec 

Ev 

ET 

Shallow-level 
Impurities 
 
Deep-level 
Impurities 

Si 

Dopant 

Metal 
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Generation-Recombination 
 Consider a semiconductor with a deep-level impurity at 

energy E = ET 

 Electrons and holes can be captured and emitted 
 Capture is characterized by the capture coefficients cn & cp 

 cn = σnvth where σn is the capture cross section [cm2] and vth is the 
thermal velocity of electrons.  Similarly for holes. 

 Emission is characterized by emission rates en and ep 

 The electron (nT) and hole (pT) occupation is also needed 

n
cn

pT nT

en

cp ep
EV

EC

ET

E

x(a) (b) (c) (d)

nT + pT = NT 
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Donors and Acceptors 
 G-R centers can be donors or acceptors 
 The charge state is : 

"0" "0""+" "-"

Donor: Acceptor:
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Carrier Statistics 
 The change in electron and hole densities n and p is  

TnTnRG npcneab
dt
dn

−=−=− )()(|

TpTpRG pncpecd
dt
dp

−=−=− )()(|

TnpTTpnRG
T nepcnNenc

dt
dn

dt
dp

dt
dn )())((| +−−+=−=−

 This equation is difficult to solve because, in general,  we 
do not know n and p 

 The change in trap density is 

n
cn

pT nT

en

cp ep
EV

EC

ET

E

x(a) (b) (c) (d)
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Carrier Statistics 
 Solving the dnT/dt equation gives 

( )

pcence

t
pcence

Nnce
tntn

ppnn

ppnn

Tnp
TT

+++
=

−−
+++

+
+−=

1

)/exp(1
)(

)/exp()0()(

τ

ττ

 Now consider an n-type semiconductor with 
electron capture and emission only 
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Electron Emission 
 Simplifying Assumptions: 

All G-R centers are occupied by electrons for t < 0 
For t ≥ 0, electrons are emitted 

n
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Electron Capture 
 Simplifying Assumptions: 

All G-R centers are empty of electrons for t < 0 
For t ≥ 0, electrons are captured  
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Steady State 
 We have assumed that all G-R centers are either 

completely occupied by electrons or completely empty 
 From 







 −
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 For Steady state, t → ∞  

 For n ≈ p ≈ 0 in the space-charge region 

T
pn

p
T N

ee
e

n
+

=

 For G-R centers in the lower half of the band gap, en << ep 
TT Nn ≈ … traps in the lower ½ bandgap tend 

to fill up 

… trap occupancy is a 
weighted average of the 
capture and emission rates. 

… depletion region trap 
occupancy is a weighted 
average of only the emission 
rates. 
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Capacitance Transient 
 When carriers are captured or emitted, the charge 

changes with time 
 Can detect this by measuring current, capacitance, or 

charge 
 Capacitance is most commonly measured 

( )VV
NqKAC

bi

scrs

−
=

2
0ε

 Nscr is the total charge in the space-charge region 
including both dopants and defects 

−+ −= TDscr NNN
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- 

n-Type 
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Capacitance Emission Transient 
 The Schottky diode is zero biased 
 Assume all G-R centers are filled with electrons 
 The diode is reverse biased 
 Electrons are emitted from the G-R centers 
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Capacitance Emission Transient 

 Usually NT << ND 
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Capacitance Transient 
 What information is contained in the capacitance 

transient? 
 In thermal equilibrium dn/dt = dp/dt =0 

 For EF = ET, nT0 = NT/2 = pT0, n = n1 
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Capacitance Transient 
 Then assume non-equilibrium emission and capture rates 

remain equal to their equilibrium values:                                                        
en0 = en and ep0 = ep 
 
 
 
 
 
 
 
 
N1 and p1 describe the trap occupancy for electrons and holes 
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Capacitance Transient 
 Then assume non-equilibrium emission and capture rates 

remain equal to their equilibrium values:  
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…where K1 and K2 are temporary 
constants used in the derivation 

…where γn = K1K2 =3.25x1021 (mn/mo) 
cm-2s-1K-2 is a constant derived from the 
temperature independent part of the 
thermal velocity and effective density of 
states. 
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Emission Time Constant 

( )( )
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One can normalize this temperature variation by plotting 
ln(T2τe) instead of ln(τe)  
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Minority Carrier Emission 
 For majority carrier emission from acceptor impurities 

 For minority carrier emission from acceptor impurities 

( ) ( ) DscrTDscr NtNNNtN =∞→−== ;0
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Carriers
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Deep-Level Transient Spectroscopy (DLTS) 
 DLTS is a method to automate the capacitance transient 
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DLTS 

 Differentiate δC with respect to T, set equal to zero and 
solve for τe 
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 Now we have τe,max and T1 
 

 Each DLTS temperature scan (peaks in spectra) result in 
only one emission time constant-temperature pair.  
Several such scans are needed to be plotted in an 
Arrhenius plot 
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DLTS 
 DLTS plots are made for 

various t1/t2 ratios 
 Determine τe,max and T1 for 

each curve 
 Plot ln(τe,max T2) vs. 1/T 

 
 
 

 Slope gives Ec - ET and 
intercept gives σn 
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DLTS 
 Since δCmax ≠ ∆Ce 
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DLTS Example 
 Problem: BVCBO of BJT degraded from 1000 V to 500 V 

BVCBO normal at T=77 K 
Epi starting wafers were OK 
Resistivity dropped after processing; 50 Ω-cm  ⇒ 15 Ω-cm 
Search for fast-diffusing deep donor impurity 

 
 

        

 

Selenium contamination from deteriorating rubber O-ring in sink 

DLTS                             Rutherford Backscattering 

Se 

Energy 
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-150        -100             -50  T(°C) 
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EC - 0.35 eV 

EC - 0.56 eV 
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DLTS Variations 
 The primary task of a DLTS system is determine ∆C, τe 

vs T so as to extract NT, ET, and σn.  
 

 This goal can be performed by direct digitation and analysis of the 
capacitance transient without going to the extremes of using analog signal 
processing techniques →DSP or numerical fitting 
 

 Trade offs in trap sensitivity versus trap energy resolution exist for all 
techniques and it can be shown that energy resolution improves as 
temperature decreases* 
 

 Analog signal processing techniques (Boxcar, Lockin and correlation 
methods) can have extremely good trap sensitivity (detection of NT<1e-6ND) 
but tend to have poor energy resolution* 
 

 DSP based processing (FFT, LaPlace, CMLPM, point differentials and non-
linear fitting) tend to have very high energy resolution (E1-E2<10 meV) but 
poorer trap sensitivity (detection of NT<1e-2ND)* 

 
*W. A. Doolittle, and A. Rohatgi, "A new figure of merit and methodology for quantitatively determining defect resolution 
capabilities in deep level transient spectroscopy analysis,” J. Appl. Phys., Vol. 75, No. 9, pp. 4570-4575, 1 May (1994)  
W. A. Doolittle and A. Rohatgi, "Comparison of Covariance Linear Predictive Modeling to the Modulation Function Method for 
Use in Deep Level Transient Spectroscopy,” J. Appl. Phys., Vol. 75, No. 9, pp. 4560-4569, 1 May (1994). 
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DLTS Variations 
 σn can measured directly by making the filling pulse 

short enough in time (less than the capture time 
constant) to result in incomplete filling of the trap states 
(i.e. tf<τC) 

𝒍𝒍 ∆𝑪 = 𝒍𝒍 𝑵𝑻−𝒍𝑻(𝟎)
𝟐𝑵𝑫

𝑪𝟎 - 𝒕𝒇
𝝉𝒄𝒄𝒄𝒕𝒄𝒄𝒄

 

τf 

ln
(∆

C)
 

𝑆𝑆𝑆𝑆𝑆 = −
1
𝜏𝑐

= − 𝜎𝑐𝑣𝑡𝑡𝑛 
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DLTS Variations 
 A seemingly small but important point: 

 
 All thermal measurements (DLTS, Hall, etc…) measure 

the change in Gibbs free energy of a defect. 
G=H-TS  so ∆G=∆H-T∆S 

…where H is enthalpy and S is entropy 
 

 All optical measurements (i.e. ones where an initial to 
final state transition occurs) are not effected by entropy 
(other than line broadening) making them measure ∆H 
not ∆G. 
 

 Electrically determined activation energies are almost 
always lower than optically determined activation 
energies by a factor ∆S 

 
 See Appendix 5.1 and references therein for details. 
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Review Questions 
 Name some common defects in Si wafers. 
 What do metallic impurities do in Si devices? 
 Name some defect sources. 
 What are point defects? Name three point defects. 
 Name a line defect, an area defect, and a volume defect. 
 How do oxidation-induced stacking faults originate? 
 What determines the capacitance transient? 
 Where does the energy for thermal emission come from? 
 Why do minority and majority carrier emission have 

opposite behavior? 
 What is deep level transient spectroscopy (DLTS)? 
 What parameters can be determined with DLTS? 
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