

ECE 4813

Semiconductor Device and Material Characterization

Dr. Alan Doolittle School of Electrical and Computer Engineering Georgia Institute of Technology

As with all of these lecture slides, I am indebted to Dr. Dieter Schroder from Arizona State University for his generous contributions and freely given resources. Most of (>80%) the figures/slides in this lecture came from Dieter. Some of these figures are copyrighted and can be found within the class text, *Semiconductor Device and Materials Characterization*. <u>Every serious</u> *microelectronics student should have a copy of this book!*

ECE 4813 Dr. Alan Doolittle

Defects

Types of Defects Defect Etching Generation – Recombination Capacitance Transients Deep Level Transient Spectroscopy

ECE 4813 Dr. Alan Doolittle

Advanced Semiconductor Technology Facility

Defects and Yield

Advanced Semiconductor Technology Facility

Wafer Defects

Defect Types

- Particles
- Residues
- Organics
- Light Metals
 - Alkali Metals, e.g., Na
- Metals
 - Cu*, Fe*, Cr*, Ni*, Zn, Ca, AI (* Most important?)
- Crystal Originated Pits (COPs)
- Surface Roughness

Defect Sources

- Silicon Starting Material
- Silicon Growth
- Wafer Sawing, Polishing
- Wafer Packaging, Shipping
- Wafer Cleaning
- Liquids, Gases
- Oxidation, Diffusion
- Photoresist
- Ion Implantation

- Sputter Deposition
- Process Equipment
- Epitaxial Growth
- Reactive Ion Etching
- Polymer Containers/Pipes
- Door Hinges
- Light Switches
- Ball Bearings
- People

Advanced Semiconductor Technology Facility

Point Defects

Line, Plane, Volume Defects

Stacking Faults

- Oxidation-induced SFs: Si interstitials are generated during oxidation and forced into the substrate
- SFs can also be generated at substrate/epi interfaces

Advanced Semiconductor Technology Facility

Defect Etching

 Certain etches attack defective regions allowing defect identification (etch recipes given at end of notes)

D.C. Miller and G.A. Rozgonyi, "Defect Characterization by Etching, Optical Microscopy, and X-Ray Topography," in *Handbook on Semiconductors* **3** (S.P. Keller, ed.) North-Holland, Amsterdam, 1980, 217-246. ASTM Standards F47 and F26, *1997 Annual Book of ASTM Standards*, Am. Soc. Test. Mat., West Conshohocken, PA, 1997.

Defect Etching

- Different etches attack defective regions differently
- Can be accentuated through copper decoration
- A Defects Interstitials

Secco

Wright

A Defects: *HF*+*HNO*₃

A Defects: HF+HNO₃+H₃PO₄

D Defects - Vacancies

Micrographs courtesy of M.S. Kulkarni, MEMC (J. Electrochem. Soc. 149, G153, Feb. 2002)

ECE 4813 Dr. Alan Doolittle

- [1] E. Sirtl and A. Adler, "Chromic Acid-Hydrofluoric Acid as Specific Reagents for the Development of Etching Pits in Silicon," *Z. Metallkd.* 52, 529-534, Aug. 1961.
- W.C. Dash, "Copper Precipitation on Dislocations in Silicon," J. Appl. Phys. 27, 1193-1195, Oct. 1956; "Evidence of Dislocation Jogs in Deformed Silicon," J. Appl. Phys. 29, 705-709, April 1958.
- [3] F. Secco d'Aragona, "Dislocation Etch for (100) Planes in Silicon," *J. Electrochem. Soc.* 119, 948-951, July 1972.
- [4] D.G. Schimmel, "Defect Etch for <100> Silicon Ingot Evaluation," J. Electrochem. Soc. 126, 479-483, March 1979; D.G. Schimmel and M.J. Elkind, "An Examination of the Chemical Staining of Silicon," J. Electrochem. Soc. 125, 152-155, Jan. 1978.
- [5] M.W. Jenkins, "A New Preferential Etch for Defects in Silicon Crystals," *J. Electrochem. Soc.* 124, 757-762, May 1977.
- [6] K.H. Yang, "An Etch for Delineation of Defects in Silicon," *J. Electrochem. Soc.* 131, 1140-1145, May 1984.
- [7] H. Seiter, "Integrational Etching Methods," in Semiconductor Silicon/1977 (H.R. Huff and E. Sirtl, eds.), Electrochem. Soc., Princeton, NJ, 1977, pp. 187-195.
- [8] K. Graff and P. Heim, "Chromium-Free Etch for Revealing and Distinguishing Metal Contamination Defects in Silicon," J. Electrochem. Soc. 141, 2821-2825, Oct. 1994.
- [9] M. Ishii, R. Hirano, H. Kan and A Ito, "Etch Pit Observation of Very Thin {001}-GaAs Layer by Molten KOH," Japan. J. Appl. Phys. 15, 645-650, April 1976; for a more detailed discussion of GaAs Etching see D.J. Stirland and B.W. Straughan, "A Review of Etching and Defect Characterisation of Gallium Arsenide Substrate Material," Thin Solid Films 31, 139-170, Jan. 1976.
- [10] D.T.C. Huo, J.D. Wynn, M.Y. Fan and D.P. Witt, "InP Etch Pit Morphologies Revealed by Novel HCI-Based Etchants," *J. Electrochem. Soc.* 136, 1804-1806, June 1989.

Impurities or Defects

- Shallow-level impurities (dopants) measure optically
 - Photoluminescence
 - Photoelectron spectroscopy
- Deep-level impurities (metals) measure electrically
 - Deep level transient spectroscopy (DLTS)
- Need to determine
 - Impurity density, N_{T}
 - Impurity energy level, E_{T}
 - Capture Cross section σ_T

Generation-Recombination

- Consider a semiconductor with a deep-level impurity at energy $E = E_T$
- Electrons and holes can be captured and emitted
- Capture is characterized by the capture coefficients $c_n \& c_p$
 - $c_n = \sigma_n v_{th}$ where σ_n is the capture cross section [cm²] and v_{th} is the thermal velocity of electrons. Similarly for holes.
- Emission is characterized by emission rates e_n and e_p
- The electron (n_T) and hole (p_T) occupation is also needed

Donors and Acceptors

- G-R centers can be *donors* or *acceptors*
- The charge state is :

Carrier Statistics

The change in electron and hole densities n and p is

$$\frac{dn}{dt}|_{G-R} = (b) - (a) = e_n n_T - c_n n p_T$$
$$\frac{dp}{dt}|_{G-R} = (d) - (c) = e_p p_T - c_p p n_T$$

The change in trap density is

$$\frac{dn_{\tau}}{dt}|_{G-R} = \frac{dp}{dt} - \frac{dn}{dt} = (c_n n + e_p)(N_{\tau} - n_{\tau}) - (c_p p + e_n)n_{\tau}$$

 This equation is difficult to solve because, in general, we do not know n and p

Carrier Statistics

Solving the dn_{τ}/dt equation gives

$$n_{\tau}(t) = n_{\tau}(0) \exp(-t/\tau) + \frac{(e_{\rho} + c_{n}n)N_{\tau}}{e_{n} + c_{n}n + e_{\rho} + c_{\rho}p} (1 - \exp(-t/\tau))$$
$$\tau = \frac{1}{e_{n} + c_{n}n + e_{\rho} + c_{\rho}p}$$

Now consider an *n*-type semiconductor with electron capture and emission only

$$n_{T}(t) = n_{T}(0) \exp(-t/\tau_{1}) + \frac{c_{n}n}{e_{n} + c_{n}n} N_{T} (1 - \exp(-t/\tau_{1})) \quad ; \quad \tau_{1} = \frac{1}{e_{n} + c_{n}n}$$

emission capture

ECE 4813 Dr. Alan Doolittle

Electron Emission

Simplifying Assumptions:

- All G-R centers are <u>occupied</u> by electrons for t < 0</p>
- + For $t \ge 0$, electrons are emitted

Electron Capture

Simplifying Assumptions:

All G-R centers are <u>empty</u> of electrons for t < 0</p>

• For $t \ge 0$, electrons are captured

Steady State

- We have assumed that all G-R centers are either completely occupied by electrons or completely empty
- From

$$n_{\tau}(t) = n_{\tau}(0) \exp(\frac{-t}{\tau}) + \frac{(e_{\rho} + c_{n}n)N_{\tau}}{e_{n} + c_{n}n + e_{\rho} + c_{\rho}p} \left(1 - \exp(\frac{-t}{\tau})\right)$$

For Steady state, $t \rightarrow \infty$

$$\boldsymbol{n}_{T} = \frac{\boldsymbol{e}_{p} + \boldsymbol{c}_{n}\boldsymbol{n}}{\boldsymbol{e}_{n} + \boldsymbol{c}_{n}\boldsymbol{n} + \boldsymbol{e}_{p} + \boldsymbol{c}_{p}\boldsymbol{p}}\boldsymbol{N}_{T}$$

... trap occupancy is a weighted average of the capture and emission rates.

For *n* ≈ *p* ≈ 0 in the space-charge region

$$\boldsymbol{n}_{T} = \frac{\boldsymbol{e}_{p}}{\boldsymbol{e}_{n} + \boldsymbol{e}_{p}} \boldsymbol{N}_{T}$$

... depletion region trap occupancy is a weighted average of only the emission rates.

For G-R centers in the *lower* half of the band gap, $e_n << e_p$

 $n_{\tau} \approx N_{\tau}$... traps in the lower ½ bandgap tend to fill up

- When carriers are captured or emitted, the charge changes with time
- Can detect this by measuring current, capacitance, or charge
- Capacitance is most commonly measured

$$\boldsymbol{C} = \boldsymbol{A}_{\sqrt{\frac{\boldsymbol{q}\boldsymbol{K}_{s}\boldsymbol{\varepsilon}_{0}\boldsymbol{N}_{scr}}{2(\boldsymbol{V}_{bi}-\boldsymbol{V})}}}$$

 N_{scr} is the total charge in the space-charge region including both dopants and defects

ECE 4813 Dr. Alan Doolittle

Capacitance Emission Transient

- The Schottky diode is zero biased
- Assume all G-R centers are filled with electrons
- The diode is reverse biased
- Electrons are emitted from the G-R centers

Advanced Semiconductor Technology Facility

Capacitance Emission Transient

$$\boldsymbol{C}(t) = \boldsymbol{A}_{\sqrt{\frac{\boldsymbol{q}\boldsymbol{K}_{s}\boldsymbol{\varepsilon}_{0}(\boldsymbol{N}_{D}-\boldsymbol{n}_{T}(t))}{2(\boldsymbol{V}_{bi}-\boldsymbol{V})}}} = \boldsymbol{C}_{0}\sqrt{1-\frac{\boldsymbol{n}_{T}(t)}{\boldsymbol{N}_{D}}}; \ \boldsymbol{C}_{0} = \boldsymbol{A}_{\sqrt{\frac{\boldsymbol{q}\boldsymbol{K}_{s}\boldsymbol{\varepsilon}_{0}\boldsymbol{N}_{D}}{2(\boldsymbol{V}_{bi}-\boldsymbol{V})}}}$$

• Usually $N_T << N_D$

$$C(t) \approx C_0 \left(1 - \frac{n_{\tau}(t)}{2N_D} \right) = C_0 \left(1 - \frac{n_{\tau}(0)}{2N_D} \exp\left(\frac{-t}{\tau_e}\right) \right) \qquad C \uparrow$$

$$C(t) \approx C_0 \left(t = 0 \right) = \frac{n_{\tau}(0)}{2N_D} C_0 = \Delta C_e \qquad C_0 - \Delta C_e$$

t

- What information is contained in the capacitance transient?
- In thermal equilibrium dn/dt = dp/dt =0

$$e_{n_0}n_{\tau_0} = c_{n_0}n_0p_{\tau_0} = c_{n_0}n_0(N_{\tau} - n_{\tau_0})$$

= $N_T f(E_T)$
 $n_0 = n_i \exp\left(\frac{(E_F - E_i)}{kT}\right); \quad n_{\tau_0} \neq \frac{N_T}{1 + \exp((E_T - E_F)/kT)}$

• For $E_F = E_T$, $n_{T0} = N_T/2 = p_{T0}$, $n = n_1$

$$\mathbf{e}_{n0} = \mathbf{c}_{n0}\mathbf{n}_{1} = \mathbf{c}_{n0}\mathbf{n}_{i}\exp\left(\frac{\mathbf{E}_{\tau}-\mathbf{E}_{i}}{\mathbf{k}T}\right) = \mathbf{c}_{n0}\mathbf{N}_{c}\exp\left(\frac{-(\mathbf{E}_{c}-\mathbf{E}_{\tau})}{\mathbf{k}T}\right)$$

Then assume non-equilibrium emission and capture rates remain equal to their equilibrium values:

$$\mathbf{e}_{n0} = \mathbf{e}_n$$
 and $\mathbf{e}_{p0} = \mathbf{e}_p$

$$\mathbf{e}_n = \mathbf{c}_n \mathbf{n}_1; \quad \mathbf{e}_p = \mathbf{c}_p \mathbf{p}_1$$

$$n_1 = N_c \exp\left(-\frac{E_c - E_{\tau}}{kT}\right); \quad p_1 = N_v \exp\left(-\frac{E_{\tau} - E_v}{kT}\right)$$

N1 and p1 describe the trap occupancy for electrons and holes

Then assume non-equilibrium emission and capture rates remain equal to their equilibrium values:

$$\tau_e = \frac{1}{e_n} = \frac{1}{c_n n_1}$$
$$= \frac{\exp((E_c - E_T)/kT)}{\sigma_n v_{th} N_c}$$
$$= \frac{\exp((E_c - E_T)/kT)}{\sigma_n K_1 T^{1/2} K_2 T^{3/2}}$$
$$= \frac{\exp((E_c - E_T)/kT)}{\sigma_n \gamma_n T^2}$$

...where K_1 and K_2 are temporary constants used in the derivation

...where $\gamma_n = K_1 K_2 = 3.25 \times 10^{21} (m_n/m_o)$ cm⁻²s⁻¹K⁻² is a constant derived from the temperature independent part of the thermal velocity and effective density of states.

where
$$N_c = 2 \left(\frac{2\pi m_n kT}{h^2}\right)^{3/2}$$
, $V_{th} = \left(\frac{3kT}{m_n}\right)^{1/2}$

$$\tau_{e} = \frac{\exp((\boldsymbol{E}_{c} - \boldsymbol{E}_{\tau})/\boldsymbol{kT})}{\gamma_{n}\sigma_{n}\boldsymbol{T}^{2}}$$

Advanced Semiconductor Technology Facility

Emission Time Constant

One can normalize this temperature variation by plotting $ln(T^2\tau_e)$ instead of $ln(\tau_e)$

ECE 4813 Dr. Alan Doolittle

Minority Carrier Emission

For majority carrier emission from acceptor impurities

$$oldsymbol{N}_{scr}ig(t=0ig)=oldsymbol{N}_{D}-oldsymbol{N}_{T}; \hspace{1em}oldsymbol{N}_{scr}ig(t o\inftyig)=oldsymbol{N}_{D}$$

For minority carrier emission from acceptor impurities $N_{scr}(t=0) = N_D; \quad N_{scr}(t \to \infty) = N_D - N_T$

Deep-Level Transient Spectroscopy (DLTS)

DLTS is a method to automate the capacitance transient

$$\boldsymbol{C}(t) = \boldsymbol{C}_{0} \left[1 - \frac{\boldsymbol{n}_{T}(0)}{2\boldsymbol{N}_{D}} \exp\left(\frac{-t}{\tau_{e}}\right) \right]$$

• Measure C at $t = t_1$ and $t = t_2$, then subtract

$$\delta \mathbf{C} = \mathbf{C}(t_1) - \mathbf{C}(t_2) = \frac{\mathbf{C}_0 \mathbf{n}_T(\mathbf{0})}{2\mathbf{N}_D} \left(\exp\left(\frac{-t_2}{\tau_e}\right) - \exp\left(\frac{-t_1}{\tau_e}\right) \right)$$

ECE 4813 Dr. Alan Doolittle

DLTS

$$\delta \mathbf{C} = \mathbf{C}(t_1) - \mathbf{C}(t_2) = \frac{\mathbf{C}_0 n_T(\mathbf{0})}{2N_D} \left(\exp\left(\frac{-t_2}{\tau_e}\right) - \exp\left(\frac{-t_1}{\tau_e}\right) \right)$$
$$\tau_e = \frac{\exp\left((E_c - E_T)/kT\right)}{\sigma_n \gamma_n T^2}$$

- Differentiate δC with respect to *T*, set equal to zero and solve for τ_e

$$\tau_{e,\max} = \frac{t_2 - t_1}{\ln(t_2/t_1)}$$

- Now we have $\tau_{e,max}$ and T_1
- Each DLTS temperature scan (peaks in spectra) result in only one emission time constant-temperature pair. Several such scans are needed to be plotted in an Arrhenius plot

DLTS

- DLTS plots are made for various t₁/t₂ ratios
- Determine τ_{e,max} and T₁ for each curve
- Plot In(τ_{e,max} T²) vs. 1/T

$$\tau_{e}T^{2} = \frac{\exp((E_{c} - E_{\tau})/kT)}{\gamma_{n}\sigma_{n}}$$

 Slope gives E_c - E_T and intercept gives σ_n

$$\ln(\tau_{e}T^{2}) = \frac{(E_{c} - E_{\tau})}{kT} - \ln(\gamma_{n}\sigma_{n})$$

DLTS

Since
$$\delta C_{max} \neq \Delta C_e$$

$$N_{T} = 2N_{D}\frac{\Delta C_{e}}{C_{0}} = \frac{\delta C_{\max}}{C_{0}}\frac{2N_{D}r^{r/(r-1)}}{(1-r)} = -8N_{D}\frac{\delta C_{\max}}{C_{0}} \text{ for } r = 2$$
$$r = t_{2}/t_{1}$$

DLTS Example

- Problem: BV_{CBO} of BJT degraded from 1000 V to 500 V
 - ♦ BV_{CBO} normal at T=77 K
 - Epi starting wafers were OK
 - → Resistivity dropped after processing; 50 Ω-cm \Rightarrow 15 Ω-cm
 - Search for fast-diffusing deep donor impurity

Selenium contamination from deteriorating rubber O-ring in sink

ECE 4813 Dr. Alan Doolittle

DLTS Variations

The primary task of a DLTS system is determine ΔC, τ_e vs T so as to extract N_T, E_T, and σ_n.

- This goal can be performed by direct digitation and analysis of the capacitance transient without going to the extremes of using analog signal processing techniques →DSP or numerical fitting
- Trade offs in trap sensitivity versus trap energy resolution exist for all techniques and it can be shown that energy resolution improves as temperature decreases*
- Analog signal processing techniques (Boxcar, Lockin and correlation methods) can have extremely good trap sensitivity (detection of N_T<1e-6N_D) but tend to have poor energy resolution*
- DSP based processing (FFT, LaPlace, CMLPM, point differentials and nonlinear fitting) tend to have very high energy resolution (E₁-E₂<10 meV) but poorer trap sensitivity (detection of N_T<1e-2N_D)*

*W. A. Doolittle, and A. Rohatgi, "A new figure of merit and methodology for quantitatively determining defect resolution capabilities in deep level transient spectroscopy analysis," J. Appl. Phys., Vol. 75, No. 9, pp. 4570-4575, 1 May (1994) W. A. Doolittle and A. Rohatgi, "Comparison of Covariance Linear Predictive Modeling to the Modulation Function Method for Use in Deep Level Transient Spectroscopy," J. Appl. Phys., Vol. 75, No. 9, pp. 4560-4569, 1 May (1994).

DLTS Variations

 σ_n can measured directly by making the filling pulse short enough in time (less than the capture time constant) to result in incomplete filling of the trap states (i.e. t_f<τ_c)

$$ln(\Delta C) = ln\left(\frac{N_T - n_T(0)}{2N_D}C_0\right) - \frac{t_f}{\tau_{capture}}$$

DLTS Variations

- A seemingly small but important point:
- All thermal measurements (DLTS, Hall, etc...) measure the change in Gibbs free energy of a defect.
 G=H-TS so ∆G=∆H-T∆S ...where H is enthalpy and S is entropy
- All optical measurements (i.e. ones where an initial to final state transition occurs) are not effected by entropy (other than line broadening) making them measure ∆H not ∆G.
- Electrically determined activation energies are almost always lower than optically determined activation energies by a factor ∆S
- See Appendix 5.1 and references therein for details.

Review Questions

- Name some common defects in Si wafers.
- What do metallic impurities do in Si devices?
- Name some defect sources.
- What are point defects? Name three point defects.
- Name a line defect, an area defect, and a volume defect.
- How do oxidation-induced stacking faults originate?
- What determines the capacitance transient?
- Where does the energy for thermal emission come from?
- Why do *minority* and *majority* carrier emission have opposite behavior?
- What is deep level transient spectroscopy (DLTS)?
- What parameters can be determined with DLTS?