

1

Generalized Magneto-Optical Ellipsometry

Nelson E. Lourenco

School of Electrical and Computer Engineering 85 5th Street, N.W., Georgia Institute of Technology Atlanta, GA 30308 USA

nlourenco@mail.gatech.edu

ECE 4813 - Semiconductor Materials and Device Characterization Dr. Alan Doolittle

- Fundamentals of Polarized Light
- Overview of Traditional Ellipsometry
- Magneto-Optical Characterization
- Generalized Magneto-Optical Ellipsometry
- Vector Generalized Magneto-Optical Ellipsometry (Vector Magnetometer)

• Light can be fully polarized, partially polarized, unpolarized

- Fully Polarized Light
 - Linearly Polarized
 - Elliptically Polarized

John D. Cressler, 7/06 D.K. Schroder "Semiconductor Device and Material Characterization, 3rd Ed."

• Developed by Dr. Robert Clark Jones

- Developed between 1941-1956 at Harvard / Polaroid Corporation
- Mathematical model for describing polarized coherent light
- Randomly polarized, partially polarized, and incoherent light cannot be modeled using Jones Calculus
 - Mueller Calculus (Stokes Vectors)

John D. Cressler, 7/06 G.G. Fuller "Optical Rheometry of Complex Fluids, 1st Ed."

Jones Calculus contd.

Polarized light represented by Jones Vector

- Linearly Polarized Light X-Direction: $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
- Circular Polarized Light
- Left-Hand (LHCP): $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$ Right-Hand (RHCP): $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}$ • Linear Optical Element represented by Jones Matrix

 $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

 $\frac{1}{2} \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$

Y-Direction: $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- Horizontal Linear Polarizer: $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
- Vertical Linear Polarizer:
- Right Circular Polarizer:

Georgia Institute of Technology

Interested in optical parameters of thin films and/or semiconductor substrates

- Air (n_0) Semiconductor $(n_1 jk_1)$ Interface
- Air (n_0) Thin Film (n_1) Semiconductor $(n_2 jk_2)$ Interface
- Complex Index of Refraction: $\tilde{n} = n jk$
 - n: phase velocity in medium

Traditional Ellipsometry

k: absorption loss through medium

$$\rho = \frac{R_p}{R_s} = \tan(\Psi)e^{j\Delta}$$

Georgialnstit

• Example: Null Ellipsometry (PCSA)

John D. Cressler, 7/06

Traditional Ellipsometry

Applications

John D. Cressler, 7/06

- Optical Properties of Materials
- Film Thickness
- Film Deposition / Etching
 - Process Control
 - In-situ Monitoring

GT MiRC Cleanroom

- Woollam Ellipsometer
- Plas-Mos Ellipsometer

Georgia Institute of Technology

- Traditional Ellipsometry determine optical properties, but there are also magneto-optical properties
 - Magneto-Optical Storage Devices
 - Ultra thin-film magnetism
 - Ferromagnetic Materials
 - Rare-Earth Magnets
 - Ferrofluids

Faraday Effect

- Occurs for light propagating through magnetic fields and magnetic materials
- Rotation of the plane of polarization

• Full Magneto-Optical Characterization Process (2 Steps)

- Optical Characterization
 - ñ = n jk
- Magneto-Optical Characterization
 - Q = Q_r jQ_i (Complex Magneto-Coupling Constant)
 - Magnetization Orientation
- Can we simplify this setup?

Magneto-optical Ellipsometer P. Q. J. Nederpel & J. W. D. Martens January 3rd, 1985

John D. Cressler, 7/06

• Developed by Andreas Berger and Matthew Pufall at University of California – San Diego (1997)

- Complete magneto-optical characterization
- Combine two-step process into one measurement

Measurement Setup

- HeNe Laser (λ=632.8 nm)
- Rotatable Polarizers (Glan-Taylor)
- Torroidal Ferrite Magnet
- Photodiode Detector

A. Berger "Generalized Magneto-Optical Ellipsometry," (1997)

Georgialnstitute of Technology

• Electric Field Vector at Detector

 $\mathbf{E}_D = \mathbf{P_2}^* \mathbf{R}^* \mathbf{P_1}^* \mathbf{E}_L$

Glan-Taylor Polarizers defined by Jones matrix

 $\mathbf{P} = \begin{bmatrix} \cos^2(\theta) & \sin(\theta)\cos(\theta) \\ \sin(\theta)\cos(\theta) & \sin^2(\theta) \end{bmatrix}$

• Reflection (Jones Matrix) of sample

$$\mathbf{R} = \begin{bmatrix} r_s & \alpha \\ -\alpha & r_p + \beta \end{bmatrix} = r_p \begin{bmatrix} \widetilde{r}_s & \widetilde{\alpha} \\ -\widetilde{\alpha} & 1 + \widetilde{\beta} \end{bmatrix} = r_p \widetilde{\mathbf{R}}$$

Light Intensity I at detector D

 $\mathbf{I} = \mathbf{E}_D \cdot \mathbf{E}_D^*$

** Linear approximation: α and β switch signs at magnetization reversal **

• Fractional intensity change at photodetector, $\delta I/I$

$$\frac{\delta I}{I} = 4 \frac{B_1 f_1 + B_2 f_2 + B_3 f_3 + B_4 f_4}{f_3 + B_5 f_5 + 2B_6 f_4}$$

$$f_1(\theta_1, \theta_2) = \sin^2(\theta_1) \sin(\theta_2) \cos(\theta_2) \qquad \mathbf{B}_1$$
$$-\sin^2(\theta_2) \sin(\theta_1) \cos(\theta_1) \qquad \mathbf{B}_2$$

$$\mathbf{B}_1 = \operatorname{Re}(\widetilde{\alpha}) \qquad \mathbf{B}_2 = \operatorname{Re}(\widetilde{r}_s \widetilde{\alpha}^*)$$

$$B_3 = \operatorname{Re}(\widetilde{\beta}) \quad B_4 = \operatorname{Re}(\widetilde{r_s}\widetilde{\beta}^*)$$

 $\mathbf{B}_5 = |\widetilde{r_s}|^2 \quad \mathbf{B}_6 = \operatorname{Re}(\widetilde{r_s})$

$$f_2(\theta_1, \theta_2) = \cos^2(\theta_2) \sin(\theta_1) \cos(\theta_1)$$
$$-\cos^2(\theta_1) \sin(\theta_2) \cos(\theta_2)$$

$$f_3(\theta_1, \theta_2) = \sin^2(\theta_1) \sin^2(\theta_2)$$

$$f_4(\theta_1, \theta_2) = \sin(\theta_1)\cos(\theta_1)\sin(\theta_2)\cos(\theta_2)$$

$$f_5(\theta_1, \theta_2) = \cos^2(\theta_1) \cos^2(\theta_2)$$

A. Berger "Generalized Magneto-Optical Ellipsometry," (1997)

GMOE contd.

Georgia Institute of Technology

• Example Data (from Berger & Pufall)

	Data set (a)	Data set	Data set (b)	
B_1	(-5.034±0.148)×	$(-2.727\pm)$	(-2.727±0.196)×10 ⁻⁵	
$\dot{B_2}$	(1.850±0.023)×	$(1.232\pm$	$(1.232\pm0.028)\times10^{-4}$	
$\bar{B_3}$	(1.623±0.169)×	(10^{-5}) (1.980±	$(1.980\pm0.044)\times10^{-4}$	
B_4	$(-3.842\pm0.210)\times$	$(-4.694\pm)$	$(-4.694\pm0.074)\times10^{-4}$	
Bs	1.4003 ± 0.0035	1.4279±	1.4279 ± 0.0048	
B ₆	-1.1405±0.0011 -1.1511±		0.0015	
	Data set (a)	Data set (b)	Difference	
	2.403(±2.4%)	2.439(±3.3%)	1.5%	
	$3.693(\pm 1.4\%)$	3.561(±1.9%)	3.6%	
2,-	$7.346 \times 10^{-3} (\pm 3.5\%)$	$6.781 \times 10^{-3} (\pm 4.4\%)$	8.0%	
2	$7.781 \times 10^{-3} (\pm 5.5\%)$	$7.926 \times 10^{-3} (\pm 7.3\%)$	1.8%	
5	3.54°(±0.34°)	47.20°(±1.47°)	43.66°	

A. Berger "Generalized Magneto-Optical Ellipsometry," (1997)

 Generalized Magneto-Optical Ellipsometry can be used as a vector magnetometer

- Andreas Berger and Mathew Pufall
- Measurement of H vs. M dependence

John D. Cressler, 7/06 A. Berger "Quantitative Vector Magnetometry using Generalized Magneto-Optical Ellipsometry," (1997) 14

References

[1] D.K. Schroder, "Optical Characterization," in *Semiconductor Material and Device Characterization*, 3rd ed. 2006

[2] G.G. Fuller, Optical Rheometry of Complex Fluids, 1st ed. 1995

[3] R.M.A. Azzam, *Ellipsometry and Polarized Light*, 1st ed. 1988

[4] A. Berger, "Generalized Magneto-Optical Ellipsometry," *Appl. Phys. Lett.*, vol. 71, no. 7, pp. 965-967, August, 1997.

[5] A. Berger, "Quantitaive Vector Magnetometry using Generalized Magneto-Optical Ellipsometry," *J. Appl. Phys.*, vol. 85, no. 8, pp. 4583-4585, April, 1999.

[1] D.K. Schroder, "Optical Characterization," in *Semiconductor Material and Device Characterization*, 3rd ed. 2006

Scanning Probe Microscopy (SPM)

Brendan Gunning ECE 4813

SPM Flavors

- AFM (Atomic Force Microscopy)
- C-AFM (Conductive Atomic Force Microscopy)
- BEEM (Ballistic Electron Emission Microscopy)
- **EFM** (Electrostatic Force Microscopy)
- KPFM (Kelvin Probe Force Microscopy)
- NSOM (Near-field Scanning Optical Microscopy)
- SCM (Scanning Capacitance Microscopy)
- **STM** (Scanning Tunneling Microscopy)
- And more...

Conductive Atomic Force Microscopy (C-AFM)

Conductive AFM

- Like AFM... but it's conductive (duh)
- Cantilever/tip is coated in conductive film (Pt, Pt-Ir, etc)
- Apply bias to tip, ground sample → contact...
- Current flows

 And... you can still get topography!

- Scan across surface
- Areas with different conductivity will have different currents
- Map current like you do with topography

http://www.nrel.gov/pv/measurements/conductive_atomic.html

Processing Characterization

as-grown CdTe/CdS Solar Cell

CdTe/CdS Solar Cell after bromine-methanol etch

Moutinho et al., "Conductive Atomic Force Microscopy Applied to CdTe/CdS Solar Cells", 2004.

More Current Mapping

- Mapping the current can shed light on things like:
 - Defects
 - Composition
 - Contamination

500 nm

Hsu et al., "Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates", 2002.

More Current Mapping

- Top samples are GaN grown with just N₂
- Bottom samples grown with H₂ and N₂
- H₂ passivated dangling bonds, reducing electrical activity

Dong et al., "Effects of hydrogen on the morphology and electrical properties of GaN grown by plasma-assisted molecular-beam epitaxy", 2005.

Scanning Current-Voltage Microscopy (SIVM)

- Tip is held at one x-y location, contacting surface
- Sweep voltage → measure current flow

Moutinho et al., "Conductive Atomic Force Microscopy Applied to CdTe/CdS Solar Cells", 2004.

Advanced Semiconductor Technology Facility

Unintended Side-Effects of C-AFM

0.5μm (b) (C)

Miller et al., "Reduction of reverse-bias leakage current in Schottky diodes on GaN grown by molecular-beam epitaxy using surface modification with an atomic force microscope", 2002.

Cross Sectional C-AFM

• Look at cross section to probe:

(b)

-3V

- Multiple layers
- Interfaces

500 nm

Hsu et al., "Scanning Probe Studies of Defect Dominated Electronic Transport in GaN"

Scanning Tunneling Microscopy (STM)

STM Apparatus and Procedure

- Coarse control brings tip (W, Pt-Ir, or Au) close to sample
- Once close enough, z-piezo brings tip within tunneling range (~5Å)
- Z-piezo steps down until preset tunneling current is reached
- As the tip rasters, changes in topography will increase/decrease current
- Feedback raises/lowers tip to maintain constant current
- The distance the tip was raised/lowered forms the topography image

STM Images

GaN on 6H-SiC

Regular (0001)

200 nm

1 µm

2 µm

Cui et al., "Suppression of Spiral Growth in Molecular Beam Epitaxy of GaN on Vicinal 6H-SiC (0001)", 2001.

Pit in N-polar GaN on Sapphire

Feenstra et al., "Reconstruction of GaN and InGaN Surfaces", 2000.

Our STM Images

HOPG – Highly Ordered Pyrolytic Graphite (3nm scan size)

Dirty, non-annealed Gold (726nm scan size)

Me! 2010

Empty vs. Filled States

7x7 surface reconstruction of Si (111) – 1.5nA tunneling current

http://physics.usask.ca/~mitchell/facilities.html

What else can we do?

- Rather than just sweeping across the surface with a set bias...
- STS sweeps the bias at a fixed x-y-z position
- Generates a "local" I-V curve, representing the integrated density of states at that position as a function of energy
- The derivative of this I-V curve, dI/dV, can tell us even more...

I-V curves over substrate

Scanning Tunneling Spectroscopy

• Instead of the integrated density of states, the dI/dV spectrum shows us the <u>actual</u> density of states at that location as a function of energy

• Can use the density of states data to create a "map" across a sample area at a chosen energy

Conclusion

- SPM covers a huge variety of more specific characterization methods
- Each one of these characterization methods is useful in and of itself

Whether it's C-AFM, STM, or some other method... SPM is an <u>extremely</u> useful and powerful characterization tool

December 2, 2011

Light Beam Induced Current/Voltage

Guy Raz ECE 4813 – Dr. Alan Doolittle Fall 2011

Motivation

- The development and production of polycrystalline solar cells creates a necessity for analysis with high spatial resolution
- Contactless probes can be used to examine:
- EBIC has been widely applied
- LBIC is more appropriate for solar cells
 - for study of defects
 - LBIV measuring V_{oc} instead of J_{sc}

Solar Cell Modeling

For a short circuit current (LBIC method) where V=0

$$I_{sc} = AJ_{PV} - I_{01}[\exp(e\frac{R_s I}{kT}) - 1] - I_{02}[\exp(e\frac{R_s I}{2kT}) - 1] - \frac{R_s I}{R_p}$$

For open circuit voltage (LBIV method)

$$V_{oc} = \frac{2kT}{e} \ln(\frac{-I_{02} + \sqrt{I_{02}^{2} + 4I_{01}(I_{02} + I_{01} + AJ_{PV})}}{2I_{01}})$$

Georgia

Figure and Equations from: Salinger, Benda & Machacek

Solar Cell Modeling (cont.)

- LBIC measurements are made around V=0
 - Slope is low, current changes slowly
- LBIV made around I = 0

Figure and Equations from: Salinger, Benda & Machacek

Introduction

- When a light beam strikes a semiconductor, it will generate electron-hole pairs (EHPs) within the beam's interaction volume.
- These EHPs will be separated by drift due to the internal electric field.
- The E/Hs can be collected at the contacts of the object.
- Amplifying and analyzing these measurements show variations in generation, drift and recombination which can be measured and displayed.

Apparatus

Figure from: Hiltner & Sires

Quantum Efficiency

 QE is the ratio of the number of charge carriers collected by the solar cell to the number of photons shinning on the solar cell.

$$IQE = \frac{1}{1 - R P_L / (h \cdot c / \lambda)}$$

- EQE
- I_{sc} is dependent on the amount of absorbed light
 Corrected by first factor

Photon Penetration/Absorption

• Energy of a photon depend only on its wavelength by

$$E = rac{h \cdot c}{\lambda}$$

 The depth of penetration depend on Energy (KeV) and material. (silicon example)

Wavelength (nm)	Penetration Depth (µm)
400	0.19
500	2.3
600	5.0
700	8.5
800	23
900	62
1000	470

Georaia

http://micro.magnet.fsu.edu/primer/java/digitalimaging/ccd/quantum/

Diffusion Length

- Photo-induced current decay is dependent on the relative thickness of sample
- It is necessary to consider two cases when analyzing LBIC intensity :
 - Thick Sample Cases (W> 4L_b)
 - Thin Sample cases (W< 4L_b)

Sample Cases

- Thick Sample Cases (W> 4L_b)
 - EBIC intensity as a function of distance x from the barrier, in a semiconductor of semi-infinite thickness and far from the collector edge (x>> L_b)

$$I(x) = C \exp(-\frac{x}{L_b}) x^{-n}$$

- Thin Sample Cases (W < 4L_b)
 - In thin samples, the influence of the front and rear surface recombination becomes very important

Geora

$$I(x) = I_0 \exp(-\frac{x}{L_{eff}})$$

Surface Recombination Velocity

If surface recombination velocities are negligible
 (s_f = s_r = 0)

$$- L_{eff} \approx L_{b}$$

However, if surface recombination velocities are large

$$(\mathbf{S}_{f} = \mathbf{S}_{r} = \infty)$$
$$\frac{1}{L_{eff}} = \sqrt{\frac{1}{L_{b}^{2}} + \frac{\pi^{2}}{W^{2}}}$$

• If $s_f = 0$ and $s_r = \infty$, or the opposite

$$-\frac{1}{L_{eff}} = \sqrt{\frac{1}{L_b^2} + \frac{\pi^2}{4W^2}}$$

LBIC topography

- Imaging carried out using 100 line with 100 points each at a step of 10µm
 - Solar cell area is 1mm²
- Minority carrier recombination is clearly evident
- Photocurrent reduced by 25% near grain boundary

LBIC topography (cont.)

- Finding the surface recombination velocity we can find the diffusion length L₁.
- The background current density is given by

$$-I_0 = qN(1-R)\alpha L(1+\alpha L)^{-1}$$

- We can solve for diffusion length L₂
- The observed difference between the two above Ls leads us to interface layers and/or the presence of impurities in the sample

Georgia

Light Sweep

Georgia Tech

Resolution

5 x 5 mm field500 x 500 micron field50 x 50 micron field100 micron spot10 micron spot1 micron spot

Notes: (1) LBIC QE very consistent with standard QE (2) Standard conditions: zero bias, 1 sun, and 638 nm

Figures from: Sites & Nagle

Defect Detection

CIGS cell with grid finger edge short. Very low QE.

Shunt is located very near grid line.

Shunt affects large area: field is 1 cm²

LBIC Variations

Wavelength Variation Bias Variation High-resolution maps of CdTe cell with increasing wavelength 10x50 micron field, 1 micron spot Bias -200 mV +50% +35% +20% +7% -7% 0 mV-20% -35% -50% 200 mV 825 nm 835 nm 840 nm 638 nm 830 nm 845 nm 850 nm 857 nm

Georgia Tech

Figures from: Sites & Nagle

- 1. What does LBIC stand for?
- 2. How is light generated for the LBIC apparatus?
- What is the limit for defining a thick/thin sample?
 (W >/< ___)
- 4. Which would have a greater affect on the I_{sc} ? R_s or R_p
- 5. What is the highest resolution that can be seen with LBIC?

Vibrating Sample Magnetometer

Brooks Tellekamp ECE 4813 November 2011

Outline

- Overview of Magnetic Properties
- Units
- Basic Magnetic Relations
- History
- VSM Basics
- Mechanical Design
- Properties of VSM

Overview of Magnetic Properties

- B = Magnetic Flux Density or Magnetic Induction
- H = Magnetic Field (typically applied to a sample)
- m = Magnetic Dipole Moment
- M = Magnetization
- μ = Magnetic Permeability

- Permeability of free space $\mu_0 = 4\pi \times 10^{-7} \frac{V \cdot S}{A \cdot m}$ (SI)

• χ_m = Magnetic Susceptibility

Units

 Gaussian units – a physical system for electromagnetic units based in CGS (centimeter-gram-second) base units

Unit	SI	CGS	Conversion
В	Tesla	Gauss	1T=10,000G
Н	$\frac{A}{m}$	Oersted (Oe)	$\frac{A}{m} = \frac{4\pi}{1000} \operatorname{Oe}$
m	$A \cdot m^2$	$emu(\frac{erg}{G})$	$A \cdot m^2 = 1000 emu$
Μ	$\frac{A}{m} = \frac{J}{T}$	$\frac{emu}{cm^3}$	$\frac{A}{m} = .001 \frac{emu}{cm^3}$
μ	$\frac{H}{m}$	Unitless	$\frac{\mu}{\mu_0} = \mu^G$
X_m	Unitless	Unitless	$\chi_m^{SI} = 4\pi \chi_m^G$

Overview of Magnetic Relations

SI

$$B = \mu H = \mu_0 (H + M)$$

$$M = \chi_m H$$

$$M = \chi_m H$$

$$\mu = \mu_0 (1 + \chi_m)$$

$$CGS$$

$$B = \mu H = H + 4\pi M$$

$$M = \chi_m H$$

$$\mu = 1 + 4\pi \chi_m$$

Where $\frac{\mu}{\mu_0} = \mu_r$ = relative permeability (material dependant) And M = nm where $n = \frac{N}{V}$ (number of acting moments per unit volume)

Hysteresis

- Ferromagnetic materials retain magnetic orientation
- Ferromagnetic materials exhibit different curves for directional field sweeps (+ to -, or - to +)

History

- Developed in the late 1950's
- No good way to measure magnetic moments without considerable prior knowledge of material properties
- Force methods are very sensitive and require a field gradient
- Other specific techniques existed, but were not adaptable to many material classes
- Vibrating coil technique used a coil with the detection axis parallel to the applied field
 - Idea modified by Dr. Simon Foner of MIT to vibrate the sample and use a coil perpendicular to the applied field Georgia

VSM Basics

- In a uniform magnetic field, a ferromagnetic sample is vibrated along the z axis
- The dipole field induces a current in the pickup coils, which is proportional to the magnetic moment
- Susceptibility is obtained as the slope of the M-H Curve
- Permeability is obtained as the slope of the B-H Curve

Mechanical Design

- 1) Loudspeaker Transducer
- 2) Paper Cup Support
- 3) Sample Holder "Straw"
- 4) Reference Sample
- 5) Sample
- 6) Reference Coils
- Pickup Coils
- 8) Magnets
- 9) Housing

Frequency Invariance

- Reference sample attached to sample holder
 - High coercivity material
- Identical coil arrangement to pickup coils
- Loudspeaker vibrates the sample and reference sample at the same frequency
- Phase and Amplitude of coil voltages are directly related via the magnetic moment of the sample

Time-Varying Dipole Field

Fixed Dipole Scalar Potential

$$\varphi = \frac{Mx}{r^3}$$

Time variant field

$$arphi_1 e^{j\omega t}$$
 where

$$\varphi_1 = -a\frac{d\varphi}{dZ} = a\frac{MxZ}{r^5}$$

Where the flux pattern is

$$-\nabla \varphi_1$$

()

FIG. 4. Time varying part of dipole field in X-Z plane for vibration parallel to Z and dipole moment parallel to X.

The pattern allows for a variety of coil arrangements where the coil axis is along a flux line.

Circuitry

- Many options for output signal measurement
 - Always a temperature controlled resistor in series with the pickup coils
 - Voltage drop is proportional to magnetic moment, m
 - Lock-in Amplifier to compare reference signal and sample signal.
 - Null Amplifier from a calibrated diode bridge
 - Reference signal is controlled with a potentiometer for precise voltage division to balance with the sample output

- Sensitivity depends on coil geometry
- With a 2 vertical coil method
 - Susceptibility changes of 5x10⁻¹⁰ can be measured
 - Magnetic moment changes of 5x10⁻⁶ emu
 - Average stability of balanced signals is 1 part in 10,000

Calibration

- Can be calibrated by 2 methods
 - Using a sample of known magnetic properties and mass
 - Usually 8mg of pure Nickel (high coercivity)
 - For weakly magnetic samples of obscure shape
 - First measure the sample in vacuum
 - Then measure in pure O₂ gas (well known susceptibility)
 - The difference of the two gives the susceptibility of the sample, which is used to calibrate that specific shape

Demagnitizing Factor

- Calibration is used to determine the Demagnitizing Factor, γ
- Once γ and m are determined, the BH curve can be extracted

$$M = 4\pi \frac{m}{V}$$

 $H_{internal} = H_{applied} - 4\pi\gamma M$

Sample γ values... Sphere: $\gamma = \frac{4\pi}{3}$, Infinite plane: $\gamma = 4\pi$, Cylinder: $\gamma = 2\pi$ Other shapes are well documented

$$B = H_{internal} + 4\pi M = H_{applied} + 4\pi M(1 - \gamma)$$

Note: SI equations only, CGS equations vary

Measurements

- Low-Conductivity Materials
 - Spherical or ellipsoid samples are preferred
 - Cubic crystals should be oriented 110 perpendicular to the z-axis
- High Conductivity Materials
 - Demagnetization corrections are not necessary
- Paramagnetic Samples
 - VSM can measure the magnetic field created by paramagnetic materials by the average value over the sample volume

Sample Data

Georgia Tech

Sources

- FONER, S. "Versatile and Sensitive Vibrating-sample Magnetometer." <u>Review of Scientific Instruments</u>, 30.7 (1959): 548-557.
- <u>http://stephenmullens.co.uk/projectwork/Vibrating%20Sample%</u>
 <u>20Magnetometer.pdf</u>
- <u>http://www.lakeshore.com/pdf_files/systems/vsm/Permanent%2</u>
 <u>OMagnet%20Paper.pdf</u>
- <u>http://magician.ucsd.edu/essentials/WebBookse7.html</u>
- <u>http://bohr.physics.berkeley.edu/classes/221/0708/notes/emunit</u> <u>s.pdf</u>

Transmission Electron Microscopy (TEM)

Jevon Raghubir ECE-4813 Fall 2011 Dr. Alan Doolittle

Why TEM?

- Limited image resolution in light microscopes
- Smallest distance that can be resolved by VLM:

$$\delta = \frac{0.61\lambda}{NA}$$

- Around 300nm for green light (λ =550nm) w/ NA=1
- That is 1000 atom diameters
- Need to image details all the way down to the atomic level
 - Solution: TEM

Electron Wavelength

$$\lambda = \frac{h}{\left[2m_0 E(1 + \frac{E}{2m_0 c^2})\right]^{1/2}}$$

- At high energies electrons approach the speed of light
- Relativistic effect must be taken into account

Accelerating voltage (kV)	Non-relativistic wavelength (nm)	Relativistic wavelength (nm)	Mass (× m ₀)	Velocity (× 10 ⁸ m/s)
100	0.00386	0.00370	1.196	1.644
120	0.00352	0.00335	1.235	1.759
200	0.00273	0.00251	1.391	2.086
300	0.00223	0.00197	1.587	2.330
400	0.00193	0.00164	1.783	2.484
1000	0.00122	0.00087	2.957	2.823

Schematic of TEM

Illumination System (Electron Emission)

- Field Emission
 - Uses large electric fields at sharp points
 - Electrons tunnel out of source
 - Source: tungsten wire
- Thermionic Emission
 - Uses heat
 - Electrons gain enough energy to overcome natural barrier Φ
 - Sources:
 - Tungsten filaments
 - LaB6 crystals

Electron Sources

Thermionic emission source

LaB6 crystal

Field emission source

Tungsten needle

Illumination System (Electron Gun)

Thermionic electron gun

Georgia

Tech

Illumination System (Condenser Lenses)

- Parallel electron beam
 - TEM imaging
 - Selected-area diffraction (SAD)
- Convergent beam
 - STEM
 - AEM
- Dependent on mode of operation

Schematic of TEM

Objective Lens (Cs Correction)

 Instrumental resolution is limited primarily by spherical aberration of the objective lens

HRTEM Images

Schematic of TEM

Imaging System

- Post-specimen lenses
 - Magnify signal transferred by objective lens
 - Diffraction pattern
 - Image
- Viewing images and DPs
 - Fluorescent screen
 - Photographic film
 - CCD camera

TEM Modes of Operation

- Diffraction mode
- Image mode
 - Bright-field microscopy
 - Block all diffracted beams and pass only transmitted electron beam
 - Dark-field microscopy
 - Allows diffracted beams and block transmitted electron beam
 - High-resolution electron microscopy
 - Admits transmitted beam and at least one diffracted beam

Example Images

DP from a single crystal Fe thin film

BF TEM image of a specimen

TEM Uses

- Crystal structure
- Lattice repeat distance
- Specimen shape
- Analytical measurements
 - Chemical information
- Study of defects
- Failure analysis

Advantages

- High lateral spatial resolution compared to other type of microscopes
- High quality and detailed images
- Can produce wide range of secondary signals
 - Backscattered electrons, auger electrons, characteristics x-rays, elastically and inelastically electrons, etc.
- Wide range of applications that can be utilized in a variety of different scientific, educational and industrial fields

Disadvantages

- Limited depth resolution
 - Gives 2D images for 3D specimens
- Specimen preparation
 - Thinning procedure can affect both their structure and chemistry of specimen
 - Time consuming
- Cost
 - About \$5 for each eV

Types of Transmission Electron Microscopes

- HRTEM (High-resolution)
- HVTEM (High-voltage)
 - Can be damaging to specimen
 - Huge
- IVTEM (Intermediate voltage)
- STEM (Scanning)
- AEM (Analytic)

Example TEMs

HVTEM

HRTEM

Georgia Tech

References

[1] D. Williams and B. Carter, Transmission Electron Microscopy A Textbook for Materials Science, Springer, 2004.

[2] D. K. Schroder, Semiconductor Material and Device Characterization, Wiley & Sons, 2006.

[3] C. Evans and R. Brundle, Encyclopedia of Materials Characterization, Butterworth-Heinemann, 1992.

[4] W. R. Runyan, Semiconductor Measurements and Instrumentation, McGraw-Hill, 1998.

Raman

Spectroscopy

By Alex Walker

Raman Spectroscopy

- Based on the effects of Raman effect, first reported in 1928
- This is a vibrational spectroscopic technique that can detect both organic and inorganic species and measure the crystallinity of solids
- Advantages:
 - Free from charging effects
 - Sensitive to strain

Raman Spectroscopy

Raman Shift

$$\Delta w = \left(\frac{1}{\lambda_0} - \frac{1}{\lambda_1}\right)$$

$$\Delta w(\mathrm{cm}^{-1}) = \left(\frac{1}{\lambda_0(\mathrm{nm})} - \frac{1}{\lambda_1(\mathrm{nm})}\right) \times 10^7 \frac{(\mathrm{nm})}{(\mathrm{cm})}$$

Raman Spectrum of cyclohexanone

 $\Delta w = Raman \ shift \ expressed \ as \ a \ wavenumber$ $\Delta \lambda o = excitation \ wavelength$ $\lambda 1 = Raman \ spectrum \ wavelength$

Raman Spectroscopy

Variations of Raman Spectroscopy

Surface Enhanced Raman
 Spectroscopy

 surface-sensitive technique that enhances Raman scattering by molecules absorbed on rough metal surfaces.

Variations of Raman Spectroscopy

Resonance Raman Spectroscopy

 Uses IR spectrum to identify unknown substances, measure the energy required to change the vibrational state of a chemical compound, and bioinorganic materials.

Ultraviolet Resonance Raman Spectroscopy

Variations of Raman Spectroscopy

Raman Optical Activity

 reliant on the difference in intensity of Raman scattered right and left circularly polarised light due to molecular chirality.

Resources

- http://www.fdmspectra.com/fdm_raman_organics.ht m
- http://en.wikipedia.org/wiki/Raman_spectroscopy
- http://en.wikipedia.org/wiki/Surface Enhanced Rama n Spectroscopy
- http://en.wikipedia.org/wiki/Resonance_Raman_spect roscopy
- http://en.wikipedia.org/wiki/Raman optical activity
- http://en.wikipedia.org/wiki/Raman_optical_activity
- http://www.nano.org.uk/news/1368/
- http://www.andor.com/learning/applications/Raman
 Spectroscopy/