Lecture 7

Thin Film PV

The Reading assignment for this lecture is:

Armin G. Aberle, "Thin-Film solar cells", Thin Solid Films, 517 (2009), pp4706-4710

Lawrence Kasmerski, J. Electron Spectroscopy And Related Phenomena, V. 150 (2006), pp. 105-135

Several images are from these references

Georgia Tech

Thin Film Amorphous Si (a-Si:H) Solar Cells

Hydrogenated Amorphous Silicon is a dominate low-cost PV technology more known for its low cost than performance.

Advantages:

Deposition is typically on inexpensive glass at low temperature (<200 degrees C)

Relatively high absorption results in the need for very little material (<300nm) Small area efficiencies as high as 9.5% have been reported Module interconnects can be integrated making module costs very low.

Disadvantages:

Low (stable) efficiencies (<6%) limit use to primarily cheap consumer electronics

Staebler-Wronski effect (light induced degradation of the material) is a primary efficiency limitation

Requires a transparent conductive oxide layer (hurts transmission and series resistance)

Why "Thin" Silicon

From Kasmerski – 2005: Significant amounts of energy and costs go into making the silicon in a solar cell. If one can lower these costs, solar power can be made significantly cheaper. This does come at a performance penalty.

Georgia Tech

Why "Thin" Silicon:

Advantages in scale of Integrated Module Based Interconnect

From Kasmerski – 2005: Since the module can be made monolithically, enormous advantages in scalability exist compared to "piece together" assembled modules.

Georgia Tech

History of Thin Silicon

From Kasmerski -2005: Combinations of a-Si:H and μ C Si have shown significant improvement in recent years including modules that are above the magic 10% threshold.

Summary of confirmed, selected a-SiH based solar-cell efficiencies and related parameters, under standard measurement and reporting conditions [194]

$V_{\rm oc}~({\rm mV})$	$J_{\rm sc}~({\rm mA/cm^2})$	FF (%)	Area (cm ²)	Efficiency (%)	Organization	Comments
Single-juncti	ion cells					
887	19.4	74.1	1.00	12.7	Sanyo	a-Si:H (not stabilized) (4/92)
897	18.8	70.1	1.08	11.5	Solarex	a-Si:H (not stabilized) (4/87)
886	17.46	70.4	0.99	10.9	Glasstech	a-Si:H (not stabilized) (9/89)
Dual-junctio	n cells					
1621	11.72	65.8	0.28	12.5	USSC/Cannon	a-Si:H/a-SiGe:H/ss (not stabilized) (1/92)
1685	9.03	68.1	0.76	10.3	Solarex	a-Si:H/a-SiGe:H (not stabilized) (10/87)
Triple-juncti	on cells					
2375	7.72	74.4	0.27	13.5	USSC	a-Si:H/a-Si:H/a-SiGe:H (not stabilized) (10/96)
2541	6.96	70	0.27	12.4	EDC	a-Si:H/a-Si:H/a-SiGe:H (not stabilized) (12/88)
2289	7.9	68.5	1.00	12.4	Sharp	a-Si:H/a-Si:H/a-SiGe:H (not stabilized) (10/96)
					_	SiGe:H (not stabilized) 12/92)

Georgia Tech

History of Thin Silicon

From Kasmerski – 2005:

Examples of Single junctions and double junction tandems. Most thin films require a transparent semiconductor layer most often implemented as Indium Tin Oxide (ITO) or Zinc Oxide (ZnO). As a semiconductor, these layers are not as conductive as metals and have some minor absorption losses and thus, hurt performance.

Thin Film Amorphous Si (a-Si:H) Solar Cells

Hydrogenated Amorphous Silicon is almost always produced by plasma deposition methods (PECVD – plasma enhanced chemical vapor deposition)

PECVD can also be used to deposit anti-reflection coatings that simultaneously hydrogenate other materials (c-Si).

Plasmas

Consider the thermal energy required to break apart the nitrogen molecule. The bond energy is 9.7 eV = 3kT/2 ==>T~75,000 degrees C! This is not possible by thermal means, but is possible by hyper thermal processes like plasmas. A plasma is a gaseous collection of ions, electrons, energetically excited molecules, and neutral gas species, normally created by the application of electromagnetic fields.

Plasmas can be used to drive reactions that would otherwise be thermally prohibited. Plasmas can be used to deposit, chemically etch or sputter materials

Many reactions can occur in a plasma. If e* is an excited electron in a plasma:Dissociation: $e^* + AB \leftrightarrow A + B + e$ Atomic Ionization: $e^* + A \leftrightarrow A^+ + 2e$ Molecular Ionization: $e^* + AB \leftrightarrow AB^+ + 2e$ Atomic Excitation: $e^* + A \leftrightarrow A^* + e$ Molecular Excitation: $e^* + AB \leftrightarrow AB^* + e$

Most modern plasmas are generated by either a DC current flowing through the gas or a radio frequency (RF) field exposed to the gas(RF plasmas do not require DC current flow, and thus, can be used to process insulating and conducting materials)

Types of Plasma Systems

Parallel Plate Systems

Advantages: Cheaper

Disadvantages: Lower plasma density, difficult to keep clean in production due to particulates flaking off the upper plate.

Every half cycle, the electric field accelerates electrons into the plates causing them to become negatively charged. The atoms/molecules can not respond fast enough to the E-field to gain a net momentum. However, the induced negative charge on the plates causes an electric field to be created that drifts ions out of the "glow discharge region" toward the plates. By having plates with different capacitances (area changes or external capacitors) the voltage on the top plate can be made to be different from the bottom plate resulting in a net movement of ions. Note all uncharged species simply diffuse away from the glow discharge region where they are created.

Georgia Tech

Types of Plasma Systems

Inductively Coupled Systems

Advantages: Higher plasma density ($\sim 10-50 \text{ x}$), easier to clean (low particulate), better uniformity over large areas. Disadvantages: Nearly 3 time the cost of a comparable parallel plate system.

Electromagnetic fields are induced into the gas by one or more coils located on the periphery of the vacuum chamber. Magnets may be used to enhance confinement of the plasma and control recombination (ions and electrons annihilating each other) at the chamber walls.

Other Details of Plasma Systems

FIGURE 3 An equivalent circuit for an rf plasma discharge.

FIGURE 2

(a) A schematic representation of an rf plasma discharge where the power is supplied to the rf cathode through a matching network. (b) A plot of the average potential between the anode (V_a) , the cathode (V_i) , and the plasma (V_2) . The herizontal position axis is meant to coincide with (a).

•The glow region contains many electrons, and thus is highly conducting.==> Resistor Model element

•The Sheaths have had their electrons stripped via the induced electric field. Thus, only limited ionic conduction occurs, along with a "depletion region capacitance" (this region is depleted of electrons).

•The above lumped model results.

•Note the frequency dependence of the plasma impedance.

FIGURE 4

Calculated sheath and plasma impedances which show how the sheath impedance changes from resistive to capacitive with increasing frequency. The plasma remains resistive over the frequency range of interest. R and X are the resistive and reactive components respectively of the total impedance, Z. The subscripts s and p denote the sheath and plasma respectively. (After Dautremont-Smith, Gottscho, and Schutz, Ref. 6.)

Other Details of Plasma Systems

Note also that at low frequencies, the ions are accelerated to higher energies (longer times) before the field reverses, resulting in higher energy ions bombarding the surface.

Ion bornbardment energy distribution in a 40 Pa Cl₂ plasma with 0.6 W/cm² and a 1.0 cm electrode spacing. (After Brace, Ref. 8.)

Thin Film II-VI Solar Cells

Light

A thin layer of CdTe can absorb more than 90%

of visible light

•Concerns over Cadmium contamination.

Real but perhaps over blown.Module recycling programs exist.

Sources and Relative Contributions of Cadmium Exposure to Humans (in Europe)

Phosphate fertilizers	41.3 %
Fossil fuel combustion	22.0 %
Iron and steel production	16.7 %
Natural sources	8.0 %
Non-ferrous metals	6.3 %
Cement production	2.5 %
Cadmium products	2.5 %
Incineration	1.0 %

Thin Film II-VI Solar Cells

Many cheap methods of production:

- •Physical deposition:
- •Sputtering, evaporation
- •Spray pyrolysis
- •Screen printing
- •Electro deposition

CdCl₂: Methanol anneal treatment lowers surface energy between grains, promoting the fusing of grains together promoting grain growth.

Uses p- I- n structure.

```
Cell efficiencies ~ 16.5%
Modules ~11%
```

Thin Film II-VI Solar Cells

Many variations exist.Many companies have come and gone.

•First Solar with significant investment from the "Walmart" owners is currently the largest PV company in the world and is arguably the cheapest PV source in the world (claims of less than \$1/watt).

ECE 4833 - Dr. Alan Doolittle

Thin Film CuInX₂ Solar Cells (X=S, Se, Te)

(Chalcopyrites)

Table 3

Summary of confirmed, selected thin-film solar-cell efficiencies and related parameters, under standard measurement and reporting conditions [194], except (*), which are reported but not confirmed

V_{∞} (mV)	$J_{\rm sc}$ (mA/cm ²)	FF (%)	Area (cm ²)	Efficiency (%)	Organization	Comments	
Cu-ternary	and multinaries						
678	32.5	85.3	0.449	18.8	NREL	ZnO/CdS/CIGS (12/98); also, 18.2%, 1.1 cm ² cell (1/99)	•Many variations
693	35.7	79.4	0.410	19.5	NREL	ZnO/CdS/CIGS (9/04)	
669	35.73	77.1	1.039	18.4	NREL	Large area (3/01)	exist.
605	36.19	68.6	0.462	15.0	NREL	ZnO/CIGS(1/99) Cd-free cell	
666	30.51	75.6	0.418	15.4	NREL	ZnO/CdS/CIGS (electrodeposited) (2/99)	•Many companies
636	34.64	71.5	0.442	15.7	NREL	ZnO/[Cd-doped CIGS] (2/01)	Many companies
671	34.0	77.6	0.15 (Active area)	17.7 17.4	Ritsumeikan University NREL	Active area efficiency; ZnS buffer, small area (11/00) CIGS on stainless steel (flexible) 2/00	have come and gone.
539	33.7	73.6	0.192	13.4	Siemens Solar	ZnO/CdS/CIS (11/92)	
736	510.1	80.5	0.102	21.1	NREL	Concentrator: 14.3 × (21.5% direct, 14.1 × (3/01)	a 1
CdTe							•Seems to be
843	25.09	74.5	1.047	15.8	Univ. South Florida	MgF2/7059 glass/SnO2/CdS/CdTe/C/Ag (6/92)	
			15.8	NREL	MgF ₂ /7059 glass/SnO ₂ /CdS/CdTe/glass (4/99)	perpetually stuck in	
848	25.86	75.5	1.131	16.4	NREL	CdSnO/CdS/CdTe/ glass (2/01)	$th \circ ($ $th \circ x t \circ x \circ x \circ t \circ th \circ x \circ x \circ x \circ th \circ x \circ th \circ x \circ x \circ th \circ x \circ x \circ th \circ$
845	25.90	75.5	1.132	16.5	NREL	CdSnO/CdS/CdTe/ glass (9/01)	the next great thing
840	26.1	73.1	1.0	16.0	Matsushita	3-5 µm CSS CdTe; question QE-current (3/97)	
Other adva	inced types						phase of development
795	19.4	71.0	0.25	11.0	EPFL	Nanocrystalline dye (Grätzel (12/96)	
795	11.3	59.2	141.4	4.7	INAP	Nanocrystalline dye (Grätzel) submodule (2/98)	
726	15.8	71.2	2.36	8.2	ECN	Nanocrystalline dye (Grätzel) (7/01)	
522	22.7	70	4.00	7.8*	Toshiba	GLE (polymer gel electrolyte) Photoe-electrochemical cell (5/00)	
835	6.3	63		3.3* 4.9	Bell Labs/Lucent NREL	"Plastic Cell" (ITA/Pentacene) (5/00) "Plastic Cell" (8/05)	
Advance ta	andems						
			4.0	25.8	Kopin/Boeing	GaAs/CIS thin film (11/89)	
			2.4	14.6	ARCO	a-Si:H/CIGS (6/88)	
0.768	25.5	68.90	2.4	13.8	NREL	Transparent CdTe cell	
0.357	6.06	68.01		1.47		CIS cell	
1.14				15.3		Glass/Cd ₂ SnO ₄ /ZnSnO _x /CdS:O/CdTe/Cu ₂ Te—Glass/ Mo/CIGS/CdS/ZnO CdTe/CIS 4-terminal mechanical stack (12/04)	

Thin Film CuInX₂ Solar Cells

•Produced by elemental deposition (scaled up versions of MBE). These have highest efficiencies.

- •Sputtering of metals then annealing in H_2 Se or Se vapor
- •Chemical deposition
- •Electrochemically

ECE 4833 - Dr. Alan Doolittle

Why Use a Tandem Solar Cell?

See the additional III-V concentrator PV presentation from IMEC also on the lecture webpage. The topics and approaches currently being used are all covered in this lecture.

Watts=(Joule/second) → (eV/second) (eV/Second)/photon energy = #photons/sec = #ehps/sec (#ehps/sec) x q =C/sec = Amps