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Why Scale?

Higher Integration Density

Higher performance

Higher On Current

Power dissipation maintained low
Reduced gate delay

Improved circuit speed

Low program voltage of non-volatile memory
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Roadmap by ITRS

Year 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | I_Iﬂﬂs 2011 | 2014 P e
Technology Generation | 165nm | 150am | 1300m | 1200m | Hiom | 100am | 70nm | S0nm | 35am ’ ™
Gate Length (m) 120 | 100 | 8 80 M | 65 45 2 2 T = 1
Vas (V) 18 | 15 [ 15 [ 15 | 12 | 12 | 09 | 06 [ 06 E o5t :
Tox () 25 | 19 | 19 | 19 | 15 PEsSol 12 ; 5 g5l |
Nominal L (zbm) | 750/350 | 7501350 | 7501350 | 750/350 | 750/350 | 750/350 | 1500350 0k |
Maximum L (nWim) | 7 8 10 13 16 | 20 | 40 | 80 | 180 ‘
Gaie Delay CVA (ps) | 94 | 86 | 73 | 69 | 61 | 57 [737 ji26 | 24 2.5 :
Gate Rs (2]) 46 | 46 | 46 | 46 | 46 | 46 | 46 |4 i @ 20f -
I @ 100 (nAgm) | 7 8 0 | 1| | o4l [ 1
Sidewall Spacer (m) | 65-130 | 59-108 | 52-104 | 48-9 | 44-88 | 40-80 | 28-56 |20 . 2 10l |
Active Poly Doping | 2.2E20 | 3.1E20 | 3.1E20 | 3.1E20 | 3.9E20 | A 6E20/{ 5.4B20 { 2B 0.5} : 1
Silicide Thickness (o) [ 45 | 40 | 34 | 32 Lo b il )8 L
Drain Ext, X; () | 36-60 | 30-50 | 2543 | 24400205 162671 T1-194) & 1995 2000 2005 2010 2015
Drain Ext. R (/1) |310-760] 280-730250-700 [240:6751230-630{ 200+ 61120450 Year
Table 1 SIA's 1999 ITRS. H;gh pcffmmano: logic 1;;;1|;:|'|;11:|I|;|g}r n:qmrcments‘, 1. The National Technology Roadmap for Semiconductors (NTRS)

specifies expected trends for axide thicknesses and supply voltages so
that requirements of power dissipation and circuit speed for each suc-
cessive technology generation are met. The predicted trends are
based on simple models and historical scaling data. These roadmaps
are often revised (dashed line: 1997, solid line: 1999) to accommodate
industry’s desire for faster ICs af an earlier date.
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Issues: sub 100 nm

_Due to_

Issue

i e —— T TR T
Short Channe] Effect | Reduced channel length with less reduced junction depth and broadness.

Gate Leakage Current | Direct tunneling through ultra-thin_oxide.

Vin Fluctuations (ate length fluctuation, Dopants density fluctuations.

Gate Poly Depletion | Solid solubility limit, Increased vertical field, Boron penetration

Junction Capacitance | Higher doping and abrupt junction.
Mobility Degradation_ | Increased channel doping. Increased vertical field, Boron penetration,
Junction Leakage Shallow junctions with silicide metallization,

S/D Resistance

Shallow junctions,

Gate Sheet Resistance | Narrow gate length.

Table 2 Issues of the CMOS scaling beyond 100nm,

ECE 6450 Georgia Tech



[Limitations

* Oxide breakdown

* Process induced damages

* Oxide leakage and device drift
* Higher I

* Transistor current and speed

» Reliability
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Process induced damage
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to 6.4 nm oxide than 11.6 nm oxide.
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Oxide leakage and device drift
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Direct tunneling may limit oxide scaling to around 2.5 nm.
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How to achieve thinner oxides:

» Oxide scaling can be achieved 1f the
following two main 1ssues are addressed

— Reliability
— Gate leakage current
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Reliability
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2. Time sequence of the formation of the percolation path in an oxide film. Ini-
tially, af time ), the traps are distributed sparsely. With time, however, the
traps begin to form clusters (t3), one of which may eventually (Tgp) short-cir-
cuif the gate electrode to the substrate causing device malfunction. Since frap
generation is a statistical process, different transistors will require different

number of traps before the percolating bridge is completed.
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Leakage problem
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10. As axide thickness is reduced, smaller applied voltage resa#s ina
specified leakage level. It is clear from this figure that 1 Alem? limit of
leakage current will be exceeded for oxides thinner :‘haﬁ' 1.6 nm if
NTRS roadmap voltages are mandated. For 100 Alem?®, the thickness
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Alternatives

replacing S10, with other insulators having
lower leakage

Intelligent circuits

Higher k-dielectrics
Use of nitrided oxides
Metallic gates
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Viewpoints

e 18t group:
— CMOS will continue to scale with corresponding scaling in gate oxide.
— reliability 1s ensured
— leakage will be managed by circuit techniques
— “mobility limit” will be crossed with better processing.
« 21 oroup:
— leakage and mobility considerations will stop oxide scaling
— double-gated structures will be necessary to obtain higher drive current.
« 3 oroup:
— leakage would prevent oxide scaling
— layout difficulties could prevent double-gated structures.
— alternate dielectrics with planar CMOS topology may be needed.
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