Lecture 10

Statistical Mechanics and Density of States Concepts

Reading:
Notes and Brennan Chapter 5

How do electrons and holes populate the bands?

Density of States Concept
In lower level courses, we state that "Quantum Mechanics" tells us that the number of available states in a cubic cm per unit of energy, the density of states, is given by:

$$
\begin{aligned}
& g_{c}(E)=\frac{m_{n}^{*} \sqrt{2 m_{n}^{*}\left(E-E_{c}\right)}}{\pi^{2} \hbar^{3}}, E \geq E_{c} \\
& g_{v}(E)=\frac{m_{p}^{*} \sqrt{2 m_{p}^{*}\left(E_{v}-E\right)}}{\pi^{2} \hbar^{3}}, E \leq E_{v} \\
& \text { unit } \equiv\left(\frac{\text { Number of States }}{c m^{3}}\right) / e V
\end{aligned}
$$

How do electrons and holes populate the bands?

Density of States Concept

Figure 2.14 General energy dependence of $g_{\mathrm{c}}(E)$ and $g_{\mathrm{v}}(E)$ near the band edges. $g_{\mathrm{c}}(E)$ and $g_{\mathrm{v}}(E)$ are the density of states in the conduction and valence bands, respectively.
Thus, the number of states per cubic centimeter between energy E' and $E^{\prime}+d E$ is

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{c}}\left(\mathrm{E}^{\prime}\right) \mathrm{dE} \text { if } \mathrm{E}^{\prime} \geq \mathrm{E}_{\mathrm{c}} \quad \text { and, } \\
& \mathrm{g}_{\mathrm{v}}\left(\mathrm{E}^{\prime}\right) \mathrm{dE} \text { if } \mathrm{E}^{\prime} \leq \mathrm{E}_{\mathrm{v}} \text { and, } \\
& 0 \text { otherwise }
\end{aligned}
$$

But previously derived this for bulk materials.

How do electrons and holes populate the bands?

Derivation of Density of States Concept
Reminder from lecture 7...

$$
\mathrm{N}=\frac{V k_{f}^{3}}{3 \pi^{2}}=\left(\frac{V}{3 \pi^{2}}\right)\left(\frac{2 m E}{\hbar^{2}}\right)^{3 / 2}
$$

Finally, we can define the density of states function:

$$
\begin{aligned}
& \mathrm{G}(\mathrm{E}) \equiv \# \text { of states per energy per volume }=\left(\frac{\mathrm{dN}}{\mathrm{dE}}\right) / \mathrm{V} \\
& \mathrm{G}(\mathrm{E})=\left[\frac{3}{2}\left(\frac{V}{3 \pi^{2}}\right)\left(\frac{2 m E}{\hbar^{2}}\right)^{1 / 2}\left(\frac{2 m}{\hbar^{2}}\right)\right] / V \\
& \mathrm{G}(\mathrm{E})=\frac{\mathrm{m} \sqrt{2 \mathrm{~m}}}{\pi^{2} \hbar^{3}} \sqrt{E}
\end{aligned}
$$

Applying to the semiconductor we must recognize $m \rightarrow \mathrm{~m}^{*}$ and since we have only considered kinetic energy (not the potential energy) we have $\mathrm{E} \rightarrow \mathrm{E}-\mathrm{E}_{\mathrm{c}}$

$$
\mathrm{G}(\mathrm{E})=\frac{\mathrm{m}^{*} \sqrt{2 \mathrm{~m}^{*}}}{\pi^{2} \hbar^{3}} \sqrt{E-E_{c}}
$$

How do electrons and holes populate the bands?

Probability of Occupation (Fermi Function) Concept
Now that we know the number of available states at each energy, how do the electrons occupy these states?

We need to know how the electrons are "distributed in energy".
Again, Quantum Mechanics tells us that the electrons follow the "Fermi-distribution function".

$$
\begin{aligned}
& f(E)=\frac{1}{1+e^{\left(E-E_{F}\right) / k T}} \text { where } k \equiv \text { Boltzman cons } \tan t, T \equiv \text { Temperature in Kelvin } \\
& \text { and } E_{F} \equiv \text { Fermi energy }(\sim \text { average energy in the crystal })
\end{aligned}
$$

$f(E)$ is the probability that a state at energy E is occupied $1-f(E)$ is the probability that a state at energy E is unoccupied

How do electrons and holes populate the bands?

Probability of Occupation (Fermi Function) Concept

Figure 2.15 Energy dependence of the Fermi function. (a) $T \rightarrow 0 \mathrm{~K}$; (b) generalized $T>0 \mathrm{~K}$ plot with the energy coordinate expressed in $k T$ units.

At $\mathrm{T}=0 \mathrm{~K}$, occupancy is "digital": No occupation of states above E_{F} and complete occupation of states below E_{F}
At $\mathrm{T}>0 \mathrm{~K}$, occupation probability is reduced with increasing energy.
$\mathrm{f}\left(\mathrm{E}=\mathrm{E}_{\mathrm{F}}\right)=1 / 2$ regardless of temperature.

How do electrons and holes populate the bands?

Probability of Occupation (Fermi Function) Concept

Figure 2.15 Energy dependence of the Fermi function. (a) $T \rightarrow 0 \mathrm{~K}$; (b) generalized $T>0 \mathrm{~K}$ plot with the energy coordinate expressed in $k T$ units.

At $\mathrm{T}=0 \mathrm{~K}$, occupancy is "digital": No occupation of states above E_{F} and complete occupation of states below E_{F}
At $\mathrm{T}>0 \mathrm{~K}$, occupation probability is reduced with increasing energy.
$\mathrm{f}\left(\mathrm{E}=\mathrm{E}_{\mathrm{F}}\right)=1 / 2$ regardless of temperature.
At higher temperatures, higher energy states can be occupied, leaving more lower energy states unoccupied (1-f(E)).

How do electrons and holes populate the bands?
Probability of Occupation (Fermi Function) Concept

How do electrons and holes populate the bands?

Probability of Occupation

We now have the density of states describing the density of available states versus energy and the probability of a state being occupied or empty. Thus, the density of electrons (or holes) occupying the states in energy between E and E+dE is:

Electrons $/ \mathrm{cm}^{3}$ in the conduction band between Energy E and E+dE	$\mathrm{g}_{\mathrm{c}}(\mathrm{E}) \mathrm{f}(\mathrm{E}) \mathrm{dE}$ if $\mathrm{E} \geq \mathrm{E}_{\mathrm{c}}$ and,
Holes $/ \mathrm{cm}^{3}$ in the valence band between Energy E and E+dE	$\rightarrow \mathrm{g}_{\mathrm{v}}(\mathrm{E})[1-\mathrm{f}(\mathrm{E})] \mathrm{dE}$ if $\mathrm{E} \leq \mathrm{E}_{\mathrm{v}} \quad$ and,
	0 otherwise

How do electrons and holes populate the bands?

Band Occupation

Energy band
diagram
diagram

\qquad

of states

Occupancy factors

distributions

(a) E_{F} above midgap

(b) E_{F} near midgap
(c) E_{F} below midgap

Figure 2.16 Carrier distributions (not drawn to scale) in the respective bands when the Fermi level is positioned (a) above midgap, (b) near midgap, and (c) below midgap. Also shown in each case are coordinated sketches of the energy band diagram, density of states, and the occupancy factors (the Fermi function and one minus the Fermi function).

How do electrons and holes populate the bands?

Intrinsic Energy (or Intrinsic Level)

Energy band
diagram

$-E_{\mathrm{c}}$
\qquad

(a) E_{F} above midgap

(b) E_{F} near midgap

Occupancy
factors

...Equal numbers of electrons and holes

Figure 2.16 Carrier distributions (not drawn to scale) in the respective bands when the Fermi level is positioned (a) above midgap, (b) near midgap, and (c) below midgap. Also shown in each case are coordinated sketches of the energy band diagram, density of states, and the occupancy factors (the Fermi function and one minus the Fermi function).

How do electrons and holes populate the bands?

Intrinsic:
Equal number of electrons and holes
n-type: more electrons than holes
p-type: more holes than electrons

$1^{\text {st }}$ What is an "Equilibrium Distribution"

If all possible configurations of a system are equally probable, then the most likely distribution is the distribution that has the most degeneracies. In this case, the degeneracies are not energy but the number of ways of reconfiguring the particles to arrive at the same result.

Consider a "Craps" system described by the vector $\mid \mathrm{A}+\mathrm{B}>$ where A and B are 1-6 (dice). In small numbers, it is easy to see that the sum of dice, while most likely to be 7 (most probable combination of numbers on 2 die), many different results can occur. However, what happens for a very large number of die described by the state,
$\mid A^{1}+B^{1}, A^{2}+B 2, \ldots . A^{10,000}+B^{10,000}>$. The average pair sum is almost always ~ 7. Thus, 7 is the equilibrium configuration of this system - i.e the most likely arrangement of die pairs.

Entropy tells us that systems tend toward disorder. This is merely a byproduct of the fact that a disordered system has the largest number of ways the system can reconfigure itself.

An Aside: Statistical Mechanics is based on the assumption of purely random particle behavior. The Fundamental Postulate of Statistical Mechanics states that all states in a system are equally likely. This is a purely TRUE assumption in perfectly random systems. However, be careful how this assumption is applied in real systems where forces act between particles. For example, having 10^{22} neutral particles congregated in a nm^{3} corner of the $1 \mathrm{~cm}^{3}$ block is just as likely as 1 specific distribution of these particles throughout the $1 \mathrm{~cm}^{3}$ block. However, having 10^{22} electrons congregated in a nm^{3} corner of the $1 \mathrm{~cm}^{3}$ block is not equally as likely as on configuration with electrons equally distributed throughout the block because the electrons are not random in that they exert forces on each other and thus do not congregate without added energy. Luckily, we are describing electron systems using a constant total energy constraint so this is not an issue for us. This deviation from statistical randomness is important in the formation of highly ordered materials such as crystals in that "lowest energy" configurations can override a systems natural tendency to maximize entropy.

But where did we get the fermi distribution function?

Probability of Occupation (Fermi Function) Concept

Electrons, belong to a class of particles (including protons and neutrons) known as "Fermions". Fermions are characterized as quantum mechanical particles "with $1 / 2$ integral spin" which thus must obey the Pauli Exclusion Principle. The number of Fermions is always conserved in a closed system and each Fermion is indistinguishable ${ }^{1}$ from any other Fermion of like type - i.e. all electrons "look alike". No two Fermions can occupy the same quantum mechanical state.

Consider a system of N total electrons spread between S allowable states. At each energy, E_{i}, we have S_{i} available states with N_{i} of these S_{i} states filled.

As they are Fermions, electrons are indistinguishable ${ }^{1}$ from one another.
Constraints for electrons (fermions):
(1) Each allowed quantum state can accommodate at most, only one electron
(2) $\mathrm{N}=\Sigma \mathrm{N}_{\mathrm{i}}=$ constant; the total number of electrons is fixed
(3) $\mathrm{E}_{\text {total }}=\Sigma \mathrm{E}_{\mathrm{i}} \mathrm{N}_{\mathrm{i}}$; the total system energy is fixed

But where did we get the fermi distribution function?

Probability of Occupation (Fermi Function) Concept

Consider only one specific energy, Ei: How many ways, W_{i}, can we arrange at each energy, $\mathrm{E}_{\mathrm{i}}, \mathrm{N}_{\mathrm{i}}$ indistinguishable electrons into the S_{i} available states.

$$
W_{i}=\frac{S_{i}!}{\left(S_{i}-N_{i}\right)!\mathrm{N}_{\mathrm{i}}!}
$$

Example: The number of unique ways of arranging 3 electrons in 5 states at energy E_{i} is: $\mathrm{S}_{\mathrm{i}}=5, \mathrm{~N}_{\mathrm{i}}=3$

$$
W_{i}=\frac{S_{i}!}{\left(S_{i}-N_{i}\right)!\mathrm{N}_{\mathrm{i}}!}=\frac{5!}{(5-3)!3_{\mathrm{i}}!}=10
$$

1	-0	-0	-0	-	-
2	-0	-	-	-0	-
3	-0	-0	-	-	-0
4	-0	-	-	-0	-
5	-0	-	-0	-	-0
6	-0	-	-	-0	-0
7	-	-0	-0	-0	-
8	-	-0	-0	-	-0
9	-	-	-	-0	-0
10	-	-	-0	-	-0

But where did we get the fermi distribution function?

Probability of Occupation (Fermi Function) Concept

When we consider more than one level (i.e. all i's) the number of ways we can arrange the electrons increases as the product of the W_{i} 's .

$$
\begin{aligned}
W= & \prod_{i} W_{i}=\prod_{i} \frac{S_{i}!}{\left(S_{i}-N_{i}\right)!\mathrm{N}_{\mathrm{i}}!} \\
& -\circ-\infty-\mathrm{E}_{\mathrm{i}+2} \\
& -\circ-\infty-\infty-\mathrm{E}_{\mathrm{i}+1} \\
& -\circ-\infty-\infty-\mathrm{E}_{\mathrm{i}}
\end{aligned}
$$

If all possible distributions are equally likely, then the probability of obtaining a specific distribution is proportional to the number of ways that distribution can be constructed (in statistics, this is the distribution with the most ("complexions"). For example, interchanging the blue and red electron would result in two different ways (complexions) of obtaining the same distribution. The most probable distribution is the one that has the most variations that repeat that distribution. To find that maximum, we want to maximize W with respect to N_{i} 's. Thus, we will find $\mathrm{dW} / \mathrm{dNi}=0$. However, to eliminate the products and factorials, we will first take the natural log of the above...

$$
\ln (W)=\sum_{\mathrm{i}} \ln \left(S_{i}!\right)-\ln \left(\left[S_{i}-N_{i}\right]!\right)-\ln \left(\mathrm{N}_{\mathrm{i}}!\right)
$$

... then we will take $\mathrm{d}(\ln [\mathrm{W}]) / \mathrm{dN}_{\mathrm{i}}=0$. Before we do that, we can use Stirling's Approximation to eliminate the factorials.

But where did we get the fermi distribution function?

Probability of Occupation (Fermi Function) Concept
Using Stirling's Approximation, for large $\mathrm{x}, \ln (\mathrm{x}!) \sim(\mathrm{x} \ln (\mathrm{x})-\mathrm{x})$ so,

$$
\ln (W)=\sum_{\mathrm{i}} \ln \left(S_{i}!\right)-\ln \left(\left[S_{i}-N_{i}\right]!\right)-\ln \left(\mathrm{N}_{\mathrm{i}}!\right)
$$

\Downarrow

$$
\ln (W)=\sum_{\mathrm{i}} S_{i} \ln \left(S_{i}\right)-S_{i}-\left(S_{i}-N_{i}\right) \ln \left(\left[S_{i}-N_{i}\right]\right)+\left(S_{i}-N_{i}\right)-\mathrm{N}_{\mathrm{i}} \ln \left(\mathrm{~N}_{\mathrm{i}}\right)+\mathrm{N}_{\mathrm{i}}
$$

Collecting like terms,

$$
\ln (W)=\sum_{\mathrm{i}} S_{i} \ln \left(S_{i}\right)-\left(S_{i}-N_{i}\right) \ln \left(\left[S_{i}-N_{i}\right]\right)-\mathrm{N}_{\mathrm{i}} \ln \left(\mathrm{~N}_{\mathrm{i}}\right)
$$

Now we can maximize W with respect to N_{i} 's. Noting that S_{i} is independent of N_{i} and that since $\mathrm{d}(\ln (\mathrm{x})) / \mathrm{dx}=1 / \mathrm{x}$, then $\mathrm{d}(\ln \mathrm{W})=\mathrm{dW} / \mathrm{W}$ when $\mathrm{dW}=0, \mathrm{~d}(\ln [\mathrm{~W}])=0$.

$$
\begin{aligned}
& \frac{d \ln (W)}{d N_{i}}=\sum_{\mathrm{i}} \frac{\partial \ln (W)}{\partial N_{i}} \\
& d \ln (W)=\sum_{\mathrm{i}}\left[\ln \left(\left[S_{i}-N_{i}\right]\right)+1-\ln \left(\mathrm{N}_{\mathrm{i}}\right)-1\right] d N_{i}
\end{aligned}
$$

Setting the derivative equal to $0 \ldots$

$$
\begin{equation*}
d \ln (W)=0=\sum_{i}\left[\ln \left(\frac{S_{i}}{N_{i}}-1\right)\right] d N_{i} \tag{4}
\end{equation*}
$$

But where did we get the fermi distribution function?

Probability of Occupation (Fermi Function) Concept
From our original constraints, (2) and (3), we get...

$$
\begin{gathered}
\sum_{\mathrm{i}} N_{i}=N, \text { a constant } \Rightarrow \sum_{\mathrm{i}} d\left(N_{i}\right)=0 \\
\sum_{\mathrm{i}} E_{i} N_{i}=E_{\text {total }}, \text { a constant } \Rightarrow \sum_{\mathrm{i}} E_{i} d\left(N_{i}\right)=0
\end{gathered}
$$

Using the method of undetermined multipliers (Lagrange multiplier method) we multiply the above constraints by constants $-\alpha$ and $-\beta$ and add (adding zeros) to equation 4 to get \ldots

$$
\begin{gathered}
\sum_{\mathrm{i}}-\alpha d\left(N_{i}\right)=0 \\
\sum_{\mathrm{i}}-\beta E_{i} d\left(N_{i}\right)=0 \\
\Downarrow \\
d \ln (W)=0=\sum_{\mathrm{i}}\left[\ln \left(\frac{S_{i}}{N_{i}}-1\right)-\alpha-\beta E_{i}\right] d N_{i}
\end{gathered}
$$

which since α and β can take on any value, requires that $\ln \left(\frac{S_{i}}{N_{i}}-1\right)-\alpha-\beta E_{i}=0$ for all i

But where did we get the fermi distribution function?

Probability of Occupation (Fermi Function) Concept
This final relationship can be solved for the ratio of filled states, N_{i} per states available $S_{i} \ldots$

$$
\begin{gathered}
\ln \left(\frac{S_{i}}{N_{i}}-1\right)-\alpha-\beta E_{i}=0 \\
\Downarrow \\
f\left(E_{i}\right) \equiv \frac{S_{i}}{N_{i}}=\frac{1}{1+e^{\alpha+\beta E_{i}}}
\end{gathered}
$$

in the case of of semiconductors, we have

$$
\begin{gathered}
\alpha=-\frac{\mathrm{E}_{\mathrm{F}}}{\mathrm{kT}} \text { and } \beta=\frac{1}{\mathrm{kT}} \\
f\left(E_{i}\right)=\frac{S_{i}}{N_{i}}=\frac{1}{1+e^{\left(E_{i}-E_{F}\right) / k T}}
\end{gathered}
$$

What other Distributions are Possible?

Bose-Einstein Distribution- Probability of Occupation for Bosons and Planckians

Bosons are characterized as quantum mechanical particles "with integral spin" which thus DO NOT obey the Pauli Exclusion Principle. Two types of Bosons are possible and Brennan has a restrictive definition of both (note most texts describe Planckians as a subset of Bosons while Brennan adopts a separate definition for Bosons and Planckians): Brennan defines a Boson as an indistinguishable (- i.e. all Bosons "look alike") particle whose number is conserved in a closed system. He further defines a Planckian as an indistinguishable particle whose number is NOT conserved. The number of Planckians in a system is unlimited (except for total universal energy constraints). Unlike Fermions, any number of Bosons/Planckians can occupy the same quantum mechanical state. Bosons/Planckians tend to collect in the same state at low temperatures forming "Bose-Einstein Condensates".

Consider a system of N total electrons spread between S allowable states. At each energy, E_{i}, we have S_{i} available states with N_{i} of these S_{i} states filled.

As defined by Brennan, Bosons (number conserved) are important in nuclear, atomic and high energy physics while Planckians (number unlimited) are important in photonics and phononics.

Constraints for Bosons:

(1) Each allowed quantum state can accommodate any number of Bosons.
(2) $\mathrm{N}=\Sigma \mathrm{N}_{\mathrm{i}}=$ constant; the total number of electrons is fixed
(3) $\mathrm{E}_{\text {total }}=\Sigma \mathrm{E}_{\mathrm{i}} \mathrm{N}_{\mathrm{i}}$; the total system energy is fixed

Constraints for Planckians:

(1) Each allowed quantum state can accommodate any number of Bosons.
(2) $\mathrm{E}_{\text {total }}=\sum \mathrm{E}_{\mathrm{i}} \mathrm{N}_{\mathrm{i}}$; the total system energy is fixed

What other Distributions are Possible?

Bose-Einstein Distribution- Probability of Occupation for Bosons and Planckians
How many ways, W_{i}, can we arrange at each energy, $\mathrm{E}_{\mathrm{i}}, \mathrm{N}_{\mathrm{i}}$ indistinguishable Bosons into the S_{i} available states.
$W_{i}=\frac{\text { Total \# Permutations of Bins and Particles }}{\text { (\# Indistinguishable Permutations of Bins)(\# Indistinguishable Permutations of Particles) }}$
$W_{i}=\frac{\left(N_{i}+S_{i}-1\right)!}{\left(S_{i}-1\right)!\mathrm{N}_{\mathrm{i}}!}$

Example: The number of ways of arranging 3 Bosons in 5 states at energy E_{i} is: $\mathrm{S}_{\mathrm{i}}=5, \mathrm{~N}_{\mathrm{i}}=3$

$$
W_{i}=\frac{\left(N_{i}+S_{i}-1\right)!}{\left(S_{i}-1\right)!\mathrm{N}_{\mathrm{i}}!}=\frac{(3+5-1)!}{(5-1)!3!}=35
$$

Example: The number of ways of arranging 2 Bosons in 3 states at energy E_{i} is: $\mathrm{S}_{\mathrm{i}}=3, \mathrm{~N}_{\mathrm{i}}=2$

$$
W_{i}=\frac{\left(N_{i}+S_{i}-1\right)!}{\left(S_{i}-1\right)!\mathrm{N}_{\mathrm{i}}!}=\frac{(2+3-1)!}{(3-1)!2!}=6
$$

What other Distributions are Possible?

Bose-Einstein Distribution- Probability of Occupation for Bosons and Planckians
When we consider more than one level (i.e. all i's) the number of ways we can arrange the electrons increases as the product of the W_{i} 's .

$$
\begin{aligned}
W= & \prod_{i} W_{i}=\prod_{i} \frac{\left(N_{i}+S_{i}-1\right)!}{\left(S_{i}-1\right)!\mathrm{N}_{\mathrm{i}}!} \\
& -\circ-\infty-\mathrm{E}_{\mathrm{i}+2} \\
& -\circ-\infty-\infty-\mathrm{E}_{\mathrm{i}+1} \\
& -\infty-\infty-\infty-\mathrm{E}_{\mathrm{i}}
\end{aligned}
$$

If all possible distributions are equally likely, then the probability of obtaining a specific distribution is proportional to the number of ways that distribution can be constructed (in statistics, this is the distribution with the most ("complexions"). For example, interchanging the blue and red electron would result in two different ways (complexions) of obtaining the same distribution. The most probable distribution is the one that has the most variations that repeat that distribution. To find that maximum, we want to maximize W with respect to N_{i} 's. Thus, we will find $\mathrm{dW} / \mathrm{dNi}=0$. However, to eliminate the products and factorials, we will first take the natural log of the above...

$$
\ln (W)=\sum_{\mathrm{i}} \ln \left(\left[N_{i}+S_{i}-1\right]!\right)-\ln \left(\left[S_{i}-1\right]!\right)-\ln \left(\mathrm{N}_{\mathrm{i}}!\right)
$$

... then we will take $\mathrm{d}(\ln [\mathrm{W}]) / \mathrm{dN}_{\mathrm{i}}=0$. Before we do that, we can use Stirling's Approximation to eliminate the factorials.

What other Distributions are Possible?

Bose-Einstein Distribution- Probability of Occupation for Bosons and Planckians
Using Stirling's Approximation, for large $\mathrm{x}, \ln (\mathrm{x}!) \sim(\mathrm{x} \ln (\mathrm{x})-\mathrm{x})$ so,

$$
\ln (W)=\sum_{\mathrm{i}} \ln \left(\left[N_{i}+S_{i}-1\right]!\right)-\ln \left(\left[S_{i}-1\right]!\right)-\ln \left(\mathrm{N}_{\mathrm{i}}!\right)
$$

\Downarrow

$$
\ln (W)=\sum_{\mathrm{i}}\left[N_{i}+S_{i}-1\right] \ln \left(\left[N_{i}+S_{i}-1\right]\right)-\left[N_{i}+S_{i}-1\right]-\left(S_{i}-1\right) \ln \left(\left[S_{i}-1\right]\right)+\left(S_{i}-1\right)-\mathrm{N}_{\mathrm{i}} \ln \left(\mathrm{~N}_{\mathrm{i}}\right)+\mathrm{N}_{\mathrm{i}}
$$

Collecting like terms,

$$
\ln (W)=\sum_{\mathrm{i}}\left[N_{i}+S_{i}-1\right] \ln \left(\left[N_{i}+S_{i}-1\right]\right)-\left(S_{i}-1\right) \ln \left(\left[S_{i}-1\right]\right)-\mathrm{N}_{\mathrm{i}} \ln \left(\mathrm{~N}_{\mathrm{i}}\right)
$$

Now we can maximize W with respect to N_{i} 's. Noting that S_{i} is independent of N_{i} and that since $\mathrm{d}(\ln \mathrm{W})=\mathrm{dW} / \mathrm{W}$ when $\mathrm{dW}=0, \mathrm{~d}(\ln [\mathrm{~W}])=0$.

$$
\begin{aligned}
& \frac{d \ln (W)}{d N_{i}}=\sum_{\mathrm{i}} \frac{\partial \ln (W)}{\partial N_{i}} \\
& d \ln (W)=\sum_{\mathrm{i}}\left[\ln \left(\left[S_{i}+N_{i}-1\right]\right)+1-\ln \left(\mathrm{N}_{\mathrm{i}}\right)-1\right] d N_{i}
\end{aligned}
$$

Setting the derivative equal to $0 . .$.

$$
\begin{equation*}
d \ln (W)=0=\sum_{\mathrm{i}}\left[\ln \left(\frac{S_{i}+N_{i}-1}{N_{i}}\right)\right] d N_{i} \tag{4}
\end{equation*}
$$

What other Distributions are Possible?

Bose-Einstein Distribution- Probability of Occupation for Bosons and Planckians
For Bosons or Planckians we have different constraints, (2) and (3), we get...

For Bosons: Using the method of undetermined multipliers (Lagrange multiplier method) we multiply the above constraints by constants $-\alpha$ and $-\beta$ and add (adding zeros) to equation 4 to get ...

$$
\begin{gathered}
\sum_{\mathrm{i}}-\alpha d\left(N_{i}\right)=0 \\
\sum_{\mathrm{i}}-\beta E_{i} d\left(N_{i}\right)=0 \\
\Downarrow \\
d \ln (W)=0=\sum_{\mathrm{i}}\left[\ln \left(\frac{S_{i}+N_{i}-1}{N_{i}}\right)-\alpha-\beta E_{i}\right] d N_{i}
\end{gathered}
$$

which requires that $\ln \left(\frac{S_{i}+N_{i}-1}{N_{i}}\right)-\alpha-\beta E_{i}=0$ for all i

What other Distributions are Possible?

Bose-Einstein Distribution- Probability of Occupation for Bosons and Planckians This final relationship can be solved for the ratio of filled states, N_{i} per states available $S_{i} \ldots$

$$
\begin{gathered}
\ln \left(\frac{S_{i}+N_{i}-1}{N_{i}}\right)-\alpha-\beta E_{i}=0 \\
\Downarrow \\
f\left(E_{i}\right) \equiv \frac{S_{i}}{N_{i}}=\frac{1}{e^{\alpha+\beta E_{i}}-1}
\end{gathered}
$$

in the case of of semiconductors, we have

$$
\begin{aligned}
& \alpha=-\frac{\mathrm{E}_{\mathrm{F}}}{\mathrm{kT}} \text { and } \beta=\frac{1}{\mathrm{kT}} \\
& \underline{\text { For Bosons: }} \quad f\left(E_{i}\right)=\frac{S_{i}}{N_{i}}=\frac{1}{e^{\left(E_{i}-E_{F}\right) / k T}-1}
\end{aligned}
$$

What other Distributions are Possible?

Bose-Einstein Distribution- Probability of Occupation for Bosons and Planckians
For Bosons or Planckians we have different constraints, (2) and (3), we get...

For Planckians: Using the method of undetermined multipliers (Lagrange multiplier method) we multiply the above constraints by ONLY the constant $-\beta$ and add (adding zero) to equation 4 to get ...

$$
\sum_{\mathrm{i}}-\beta E_{i} d\left(N_{i}\right)=0
$$

$$
d \ln (W)=0=\sum_{\mathrm{i}}^{\Downarrow}\left[\ln \left(\frac{S_{i}+N_{i}-1}{N_{i}}\right)-\beta E_{i}\right] d N_{i}
$$

which requires that $\ln \left(\frac{S_{i}+N_{i}-1}{N_{i}}\right)-\beta E_{i}=0$ for all i

What other Distributions are Possible?

Bose-Einstein Distribution- Probability of Occupation for Bosons and Planckians This final relationship can be solved for the ratio of filled states, N_{i} per states available $S_{i} \ldots$

$$
\begin{gathered}
\ln \left(\frac{S_{i}+N_{i}-1}{N_{i}}\right)-\beta E_{i}=0 \\
\Downarrow \\
f\left(E_{i}\right) \equiv \frac{S_{i}}{N_{i}}=\frac{1}{e^{\beta E_{i}}-1}
\end{gathered}
$$

in the case of of semiconductors, we have

$$
\beta=\frac{1}{\mathrm{kT}}
$$

For Planckians

$$
f\left(E_{i}\right)=\frac{S_{i}}{N_{i}}=\frac{1}{e^{\left(E_{i}\right) / k T}-1}
$$

