Lecture 3 Wave Properties

Reading:

Notes

Georgia Tech

ECE 6451 - Dr. Alan Doolittle

Classical Mechanics describes the dynamical* state variables of a particle as x, y, z, p, etc...

Quantum Mechanics takes a different approach. QM describes the state of any particle by an abstract "Wave Function", Ψ(x, y ,z ,t), we will describe in more detail later.

Thus, we will review some properties of waves.

*There are also classical static variable such as mass, electronic charge, etc... that do not change during physical processes.

Georgia Tech

ECE 6451 - Dr. Alan Doolittle

As waves are important in Quantum Mechanics, it is worth re-examining some properties of waves.

1) Generality of Waves and Superposition: Any complex wave or shape of any kind can be decomposed into a set of orthogonal plane waves using a Fourier Series. (Same as in signal processing).

Georgia Tech

2) Phase Velocity: Given a wave of the form,

$$\Psi(x,t) = A e^{i(kx - \omega t)}$$

Points of constant phase can be found by the following relationship:

$$kx - \varpi t = constant$$

Thus, we can differentiate this equation to find the phase velocity (speed of propagation) of the wave $dx = \pi$

$$v_{\text{phase}} = \frac{dx}{dt} = \frac{\omega}{k}$$

Georgia Tech

3) Group Velocity: Any combination of waves can result in a complex wave through superposition. This complex wave moves in space.

$$\Psi(x,t) = A \int_{-\infty}^{\infty} g(k) e^{i(kx - \omega t)} dk$$

Consider a simple sum of two cosine functions: $\Psi(\mathbf{x}, \mathbf{t}) = \operatorname{Acos}(\mathbf{k}_1 \mathbf{x} - \boldsymbol{\omega}_1 \mathbf{t}) + \operatorname{Bcos}(\mathbf{k}_2 \mathbf{x} - \boldsymbol{\omega}_2 \mathbf{t})$ Defining ω as the average of ω_1 and ω_2 and k as the average of k_1 and k_2 , $\omega_1 = \omega - \Delta \omega$ and $\omega_2 = \omega + \Delta \omega$ $k_1 = k - \Delta k$ and $k_2 = k + \Delta k$ $\Psi(\mathbf{x}, \mathbf{t}) = 2\operatorname{Acos}(\boldsymbol{\varpi} \, \mathbf{t} - \mathbf{kx})\operatorname{cos}((\Delta \, \boldsymbol{\varpi}) \, \mathbf{t} - (\Delta \mathbf{k})\mathbf{x})$ High Frequency Low Frequency Addition of two waves of slightly different frequency "Carrier" "Signal" If ω_1 and ω_2 are similar, $\Delta \omega << \omega$ and thus the slowly varying group (relative to the quickly varying "carrier") has a "group velocity" of: $v_{\text{Group}} = \frac{\Delta \overline{\sigma}}{\Lambda k} \Rightarrow \text{ and in the infinitesmal limit} \Rightarrow v_{\text{Group}} = \frac{\overline{d}}{\overline{d}}$

Georgia Tech

ECE 6451 - Dr. Alan Doolittle