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Lecture 7

3D Crystals and Band Structure

Reading:  

Notes and Brennan Chapter 7.4, 8.0-8.2
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Importance of k-Space Boundaries at k=(+/-)π/a
Crystal Structures, Brillouin Zones and Bragg Reflection

After Neudeck and Peirret Fig 4.1

The crystal lattice 
consists of a periodic 
array of atoms. Unit Cell Concept

While crystals have rotational symmetry, we restrict ourselves to methods of reconstructing the 
entire crystal (every lattice point) using translation of a unit cell (a special type known as a Bravais
cell) only – no rotation.
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Unit Cell Concept

A “building 
block” that can 
be periodically 
duplicated to 
result in the 
crystal lattice is 
known as the 
“unit cell”.
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The crystal lattice 
consists of a periodic 
array of atoms.

The smallest “building block”
that can be periodically 

duplicated to result in the 
crystal lattice is known as the 

“primitive unit cell”.

The unit cell 
may not be 

unique.

Unit Cell Concept

A “building 
block” that can 
be periodically 
duplicated to 
result in the 
crystal lattice is 
known as the 
“unit cell”.
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Unit Cell Concept:  Translation of a 3D Bravais Lattice
Deconstructing a Hexagonal Crystal From a Trigonal P Bravais Lattice

Side View
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Unit Cell Concept:  Translation of a 3D Bravais Lattice
Deconstructing a Hexagonal Crystal From a Trigonal P Bravais Lattice

Top View  with 
Trigonal Lattice 

Apparent

The crystal is reconstructed by 
translating the Bravais Lattice along 
vectors with 60 degree symmetry.
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Unit Cell Concept

Lattice Constant:  A length that describes the unit cell. It is normally 
given in Å, angstroms = 1e-10 meters.

Diamond Structure:  
Constructed by 2 

“inter-penetrating”
FCC Lattices

Zincblende is a 
diamond structure 
with every other 
atom a different 

element.  Example: 
Ga only bonds to As 
and As only bonds 

to Ga.

Note: In class 
show DiamondTM

examples.
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Unit Cell Concept

Some unit cells have 
hexagonal symmetry.

Rocksalt unit cells are 
one of the simplest 
practical unit cells.
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k-space or Reciprocal Space Description of a Crystal

Since the Bloch wavefunction is distributed throughout the crystal, the position 
of the electron is highly delocalized.  Thus, from the uncertainty principle, the 
momentum of the electron in the crystal should be well defined*.

Therefore, it is convenient for us to consider the k-space equivalent of the 
crystal and in particular the Reciprocal Lattice.

* Strictly speaking the Bloch wavefunction is not an eigenfunction of the momentum operator 
and thus, the momentum is not exactly known.  However, due to the uncertainty principle, the 
vast delocalization of the electron in the crystal (in Bloch states) will result in well defined 
but not singular value of momentum.  Thus, to a good approximation, the electrons in the 
crystal will be treated as nearly free electrons with well defined momentum.
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The RS unit cell fully reconstructs the entire reciprocal space via only translations just 
like the real space unit cell reconstructs the entire crystal via only translations.

Note that the Reciprocal space unit cell maintains the same symmetry as the real space 
unit cell because it was derived from the real space unit cell.
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An example for a Body Centered Cubic (BCC) RECIPROCAL 
LATTICE material*.

k-space or Reciprocal Space Description of a Crystal

*It can be shown that the Face centered cubic and Body centered cubic structures are Fourier analogs so the above example is the reciprocal lattice equivalent of an FCC 
crystal.

Fourier Transform
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Connect an arbitrary lattice point to all of its nearest neighbors 
(green lines)...

k-space or Reciprocal Space Description of a Crystal
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...construct the perpendicular bisectors to all of these lines. The 1st

Brillouin Zone is the volume enclosed within this region.

k-space or Reciprocal Space Description of a Crystal
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...construct the perpendicular bisectors to all of these lines. The 1st

Brillouin Zone is the volume enclosed within this region.

k-space or Reciprocal Space Description of a Crystal
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kz

ky
kx

http://britneyspears.ac/physics/dos/dos.htm

Cubic GaN

Real Space
Crystal Momentum Space

•Different potentials exist in different 
directions

•Electron wavelength and crystal 
momentum, k=2π/λ, differs with direction

•Plots of E-k are 4D plots, thus have to be 
represented in other ways (as slices along 
certain directions).

•Many different parabolic E-k 
relationships exist depending on our 
crystalline momentum

Now consider the 3D periodic potential in a cubic crystal
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•All equivalent directions give redundant information and 
thus are not repeated

•Most important k-space points

• Γ-point is the center of crystal momentum space (k-
space) at k=0

• X-point is the edge of the first Brillouin zone (π/L 
edge) of crystal momentum space (k-space) in the 
<100> direction

• L-point is the edge of the first Brillouin zone (π/L 
edge) of crystal momentum space (k-space) in the 
<111> direction

Cubic GaN

Now consider the 3D periodic potential in a cubic crystal

Neudeck and Peirret Fig 3.13
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Suzuki, M, T. Uenoyama, A. Yanase, First-principles calculations of effective-mass parameters of AlN and GaN, Phys. Rev. B 52, 11 (1995), 8132-8139. 
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Now consider the 3D periodic potential in a hexagonal crystal

Full Band Diagram

Real SpaceCrystal Momentum Space
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Neudeck and Peirret Fig 3.14

Where are the electron trajectories/momentum vectors in the crystal?

Neudeck and Peirret Fig 3.13

Valence Band E-k 
and constant 

energy surfaces 
all look similar

Si EC minima occurs at ~0.8(π/a)

In these figures, the 
Energy is fixed near 
the band edges (E>EC
for example) and al 
values of k having this 
fixed energy are 
plotted to give a 3D E-
k representation.
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After Neudeck and Pierret Tables 3.1 and 4.1
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

We can use the idea quantum confinement of a set of states ( 1D well region) to derive the 
number of states in a given volume (volume of our crystal).

Consider the surfaces of a volume of semiconductor to be infinite potential barriers (i.e. 
the electron can not leave the crystal).  Thus, the electron is contained in a 3D box.

After Neudeck and Pierret Figure 4.1 and 4.2
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

Using separation of variables...
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Since k is a constant for a given energy, each of the three terms on the left side must 
individually be equal to a constant.

So this is just 3 equivalent 1D solutions which we have already done...
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

Cont’d...
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kzEach solution (i.e. each 
combination of nx, ny, nz) 
results in a volume of “k-
space”.  If we add up all 
possible combinations, we 
would have an infinite 
solution.  Thus, we will only 
consider states contained in a 
“fermi-sphere” (see next 
page). See Pierret and Neudeck for a 

more general approach that 
does not require the fermi
sphere argument.  Tie this into 
the GaAs equi-energy surface 
in lecture 7.
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

Cont’d...
f
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A “Fermi-Sphere” is 
defined by the 
number of states in 
k-space necessary to 
hold all the electrons 
needed to add up to 
the average energy 
of the crystal 
(known as the fermi
energy). 

“V” is the physical 
volume of the 
crystal where as all 
other volumes used 
here refer to volume 
in k-space.  Note 
that: Vsingle-state is the 
smallest unit in k-
space. Vsingle-state is 
required to “hold” a 
single electron.
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

Cont’d...
k-space volume of a single state “cube”:     V
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Correction for 
allowing 2 electrons 
per state (+/- spin)

Correction for redundancy in 
counting identical states resulting 

from +/- nx, +/- ny, +/- nz. 
Specifically, sin(-π)=sin(+π) so the 
state would be the same.  Same as 

counting only the positive octant in 
fermi-sphere.
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

Cont’d...
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

Cont’d...

E

V

mmEV

32

2

2
1

22

2mm  G(E)

22
3

 
2
3 

 G(E)

V
dE
dN

per volumeenergy per  states of #  G(E)

h

hh

π

π

=



































=









=≡

2
3

222

3 2
33

 
N 













==

h

mEVkV f

ππ

Applying to the semiconductor we must recognize m m* and 
since we have only considered kinetic energy (not the potential 
energy) we have E E-Ec

cEE −= 32

** 2mm  G(E)
hπ

Finally, we can define the density of states function:


