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Importance of k-Space Boundaries at k=¢/-)m/a
Crystal Structures, Brillouin Zones and Bragg Reflection

The crystal lattice

consists of a periodic .
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While crystals have rotational symmetry, we restrict ourselves to methods of reconstructing the
entire crystal (every lattice point) using translation of a unit cell (a special type known as a Bravais
cell) only — no rotation.

After Neudeck and Peirret Fig 4.1
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A “building
block” that can
be periodically
duplicated to
result in the
crystal lattice is
known as the
“unit cell”.
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Unit Cell Concept

The crystal lattice The smallest “building block”
consists of a periodic that can be periodically
array of atoms. duplicated to result in the
crystal lattice is known as the
A “building SBEbe / “primitive unit cell”.
block” that can 00 000 ¢
be periodically 00 |-
-/) ™
duplicated to I. .8
. O O
result in the e
o . (a) (b)
“unit cell”. ole il «—  maynotbe
© 0|0 e unique.

(c) (d)

Figure 1.2 Introduction to the unit cell method of describing atomic arrangements within crystals.
(a) Sample two-dimensional lattice. (b) Unit cell corresponding to the part (a) lattice. (c) Reproduc-
tion of the original lattice. (d) An alternative unit cell.
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Unit Cell Concept: Translation of a 3D Bravais Lattice

Deconstructing a Hexagonal Crystal From a Trigonal P Bravais Lattice
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Unit Cell Concept: Translation of a 3D Bravais Lattice

Deconstructing a Hexagonal Crystal From a Trigonal P Bravais Lattice

AN N AN

Real space lattice vector R= l,a+1,b+1;c

AN A A\

Note :a,b and ¢ do not have to be orthogonal!

b

L. )
a
cis pointed out of the plane. /

The crystal is reconstructed by
translating the Bravais Lattice along
vectors with 60 degree symmetry.

Top View with
Trigonal Lattice
Apparent
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Unit Cell Concept

Lattice Constant: A length that describes the unit cell. It is normally
given in A, angstroms = 1e-10 meters.

Diamond Structure: Zincblende is a

Constructed by 2 diamond structure
“inter-penetrating” TG T wee CENTERED cuBlc with every other
FCC Lattices B '_ Y , / atom a different
:e‘ NPT T P i element. Example:
\ ‘ | o Ga only bonds to As
/ N and As only bonds
to Ga.
Note: In class (c, e, s, etc) (Gas, GoF, aic)
show Diamond™ Fig. 1 Some important unit cells (direct lattices) and their representative elements or

compounds; a is the lattice constant.
examples.
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Unit Cell Concept

Some unit cells have
hexagonal symmetry.

(a)

Rocksalt unit cells are
one of the simplest
practical unit cells.

Pb

(b)

Fig. 2 Two unit cells of compound semiconductors. (a) Wurtzite lattice (CdS, ZnS, etc.).
(b) Rock-salt lattice (PbS, PbTe, etc.).
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k-space or Reciprocal Space Description of a Crystal

Since the Bloch wavefunction is distributed throughout the crystal, the position
of the electron is highly delocalized. Thus, from the uncertainty principle, the
momentum of the electron in the crystal should be well defined".

Therefore, it is convenient for us to consider the k-space equivalent of the
crystal and in particular the Reciprocal Lattice.

Given a real space lattice vector R = l,a+1,b+1c

A A

then we can define a reciprocal lattice vector G=ha+kb' +Ic’ by,

G e R = 21 n where n is an integer.

) (ﬁxéj ) (éx;j ) (sxﬁj
’ b =2x ¢ =2r

a =2«
Volume of Real Space Unit Cell Volume of Real Space Unit Cell Volume of Real Space Unit Cell

The RS unit cell fully reconstructs the entire reciprocal space via only translations just
like the real space unit cell reconstructs the entire crystal via only translations.

Note that the Reciprocal space unit cell maintains the same symmetry as the real space
unit cell because it was derived from the real space unit cell.

N N A A A A
* Strictly speaking the Bloch wavefunction is not an eigenfunction of the momentum operator A (b x Cj A (C X a) A (a X bj
and thus, the momentum is not exactly known. However, due to the uncertainty principle, the a =2r b =2r~ 7 =2
vast delocalization of the electron in the crystal (in Bloch states) will result in well defined ;, o {;X g aebxc ;/)\' . 6 % 8
but not singular value of momentum. Thus, to a good approximation, the electrons in the

crystal will be treated as nearly free electrons with well defined momentum.
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k-space or Reciprocal Space Description of a Crystal

An example for a Body Centered Cubic (BCC) RECIPROCAL

LATTICE material®.

*It can be shown that the Face centered cubic and Body centered cubic structures are Fourier analogs so the above example is the reciprocal lattice equivalent of an FCC
crystal.
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k-space or Reciprocal Space Description of a Crystal

Connect an arbitrary lattice point to all of its nearest neighbors
(green lines)...

V'S

/|
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k-space or Reciprocal Space Description of a Crystal

...construct the perpendicular bisectors to all of these lines. The 1%
Brillouin Zone is the volume enclosed within this region.

V'S

&1
7
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k-space or Reciprocal Space Description of a Crystal

...construct the perpendicular bisectors to all of these lines. The 1%
Brillouin Zone is the volume enclosed within this region.
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Now consider the 3D periodic potential in a cubic crystal

Different potentials exist in different

directions Zinc blende

*Electron wavelength and crystal X-valleys

momentum, k=2r/A, differs with direction \ | _/

=3

. ) 300K
Plots of E-k are 4D plots, thus have to be Cubic GaN E,=32¢eV

represented in other ways (as slices along E, Ex=4.6¢eV
certain directions).

-

*Many different parabolic E-k <100> : E] ' <100>
relationships exist depending on our

crystalline mome':(ntum Split-off band

4

http://britneyspears.ac/physics/dos/dos.htm
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Now consider the 3D periodic potential in a cubic crystal
S Ge : i \ ;&/
Zinc blende Energy T > i \,N

-~ 2 el
% E
X-valleys L-valleys < L B E | g i
— L'l-l .AEG\ E, Eg ic
g T E, Y g E,
. 300K -1t > =
Cubic GaN E,=32eV F i F
[-valley E, Ex=4.6 eV
Ex E =48-51¢V -3 - -
Eq=0.02eV -4
0 L (1D T o)) X L (1) T (1000 X L (111) [ (100) X
k (wave vector)

<100> E \Heavy holes  <I11> (a) (b) (©)
Light holes

Split-off band

T=300K

All equivalent directions give redundant information and
thus are not repeated 2 1‘/\

*Most important k-space points %
o hlf ! 171 eV 142eV 1.90 eV
* ["-point is the center of crystal momentum space (k- &
space) at k=0 o vy to--—z 3 [
H‘eavy holes |01 . N -f_ -
« X-point is the edge of the first Brillouin zone (n/L ST 034cV
edge) of crystal momentum space (k-space) in the - IR
<100> direction L A T A X

k (wave vector)
* L-point is the edge of the first Brillouin zone (n/L @

edge) of Crysta| momentum space (k-space) in the Figure3.13 (100)/(111)E-k diagrams characterizing the conduction and valence bands of
(a) Ge, (b) Si, and (c, d) GaAs. [(a—) after Szel’; (d) from Blakemore.!!! Reprinted with

<111> direction permission.]  Noydeck and Peirret Fig 3.13
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Now consider the 3D periodic potential in a hexagonal crystal

Wurtzite Energy 0
ev GaN 15 ~ '
KRR
A-valley M-L-valleys sk 3 2 '/\3
\\— . _,-/ . _/-\”QZAWB z
300K ' d
E,= 339eV L .
el T-valley £ Fho—45-53ev ] ‘' Full Band |Diagram
A E e Es= 47-55eV w of s
§ Eo= 0.008 eV : - )
— -2t 13
L0 Eq= 0.04cV Q ey Z \
k, E,| == N —Heavy holes k, Lf : 3 2
Light holes -5\ 3 /\ ]
. . 13 4/\3 E !
Split-off band A R LU M £ TraA s HPEK 1 T
k
k

Crystal Momentum Space

Suzuki, M, T. Uenoyama, A. Yanase, First-principles calculations of effective-mass parameters of AIN and GaN, .
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Where are the electron trajectories/momentum vectors in the crystal?

p T N oy

— —~
- - ~
—

p e ~ —- N\

N\ - \
5+ - == . - .

Ge - GaAs \_Si £ minima occurs at ~0.8(n/a) \

- o —
4 — A - ~ \
3 - ~

’/
L= T \
%K \
| .
o _

E—E, (eV)
| |
%\‘
.n.,'\
T W T | L
*"’“ﬂé{

‘1‘ Ak | EN T
}f . v g, E,
_1 — — . % ;J{
Y B \ [111]
i ‘\ L[ B I
B \ . 1L
Ly dooy x L Q1 r {00y x L 1in) r (100 x Vi
\ N k (wave vect‘r] \ Ge Si / GaAs
@ N LI O (a) (b) / (©
\ k, P 7 In these figures, the
S \ Energy is fixed near
3 - . \ the band edges (E>E_.
~ \\yalence Band E-k for example) and al
=~ values of k having this
2f L, =~ andconstant _ -~ fixed energy are £
g E, energy su rfaces plotted to giV.e a 3D E-
e 1 .. k representation.
i LT e all look similar Ky
o (V1) Lo 4 —E,
Heavy holes B
Light holes }
(V2) 034eV

Split-off band
(V3)

A X (d)

k (wave vector)

@ Constant-energy surfaces characterizing the conduction-band structure in (a, d)

. ) . . Ge, (b) Si, and (c) GaAs. (d) Shows the truncation of the Ge surfaces at the Brillouin-zone
Figure 3.13  (100)/(111)E-k diagrams characterizing the conduction and valence bands of poundaries. [(a—c) after Sze!2) and Ziman!¥; (d) from McKelvey.*! Reprinted with permission; the
(a) Ge, (b) Si, and (c, d) GaAs. [(a—<) after Szel®; (d) from Blakemore.'! Reprinted with latter from Robert E. Krieger Publishing Co., Malabar FL]

permision]  Neudeck and Peirret Fig 3.13 Neudeck and Peirret Fig 3.14
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3D Crystalline Effects on Effective Mass

For Valence Bands and E- of Direct gap For E of Indirect gap materials,
materials,

ma=F
So for 3D crystals
m m m
- Xxx Xy Xxx 2

d_V:;F where;: m, m; m, |andm :Lz 0L fori,j=x,yand z
&t o ' oo " I Ok,Ok,

mZX mZy myy

n’ n’ n’
E—Eczz—m*(kf+k22+k§) E—Eczz—ml*kf+2 (k2 +K2)

e t

* . . .
where m, and m, are the longitudinal and transverse effective masses
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3D Crystalline Effects on Effective Mass

For Valence Bands and E- of Direct gap For E of Indirect gap materials,
materials,

Lo k)

hZ

2
E-Eczzh—nf(kf+k§+k§) E-E. =

e

2m,

* * . . .
where m, and m, are the longitudinal and transverse effective masses

t

For the ellispsoid case, we can define an average effective mass for electrons m | that
averages the anisotropic properties. This is valid being that many scattering events occur and
thus, the anisotropic properties of the crystal are effectively averaged. To do so, we define a spherical

2m, (E ~ E)

hZ

volume of radius k = \/ such that the volume of the new sphere is equal to the volume of ellipsoid. Thus,

4 4 L
(N ellipsoids in 1% Brillioun Zone Ig 7 kl k2k3) = E 4 keff thlS leads tO,

* % \2 ( % )%
(I\IellipsoidsinlSl Brillioun Zone)( ml (mz ) j - mn SO
1
* * *\2 |3
- o )
, (N ellipsoids in 1** Brillioun Zone )y (ml m,

: 1
ellipsoids in 1** Brillioun Zone =6 for Sl and (4 = E 8) for Ge
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3D Crystalline Effects on Effective Mass

For Valence Bands

Similarly for the valence band,

m; = ((m;;h)% + (m;h )%)%

where m,, and m,, are the light hole and heavy hole effective masses

Table 3.1 Electron and Hole Effective Masses in Ge.!
Si,'""and GaAs!'! at 4 K. (All values referenced to the free

Table 4.1
and GaAs

Density of States Effective Masses for Ge, Si,

electron rest mass m,.) ]
Effective Mass Ge Si GaAs
————— : _ .
| “ffective Mass | Ge Si |  GaAs 1 - |
————— — I | m*/im, [=4K 0.553 1.062 0.067
n _—
| mimg | 1588 | 09163 - T = 300K 1182 | 0.0655'
' | i1 < - .
’ milmy f_l:ilhljl ) fl.W{]E"l sl myim I'=4K 0.357 0.590 0.532
L mdmy § 0067 | T =300K 0.81 0.524
’ my/my 0.347 0.537 0.51
I — - - - e 'The band edge effective mass ratio is 0.0632. The value quoted
; My 1 . 0.0429 0.153 0.082 here takes into account the non-parabolic nature of the GaAs
mijm, | 0077 0234 0.154 conduction band and yields the correct nondegenerate carrier

concentrations when employed in computational expressions

. developed later in this chapter.
Band edge effective mass. The E-k relationship about the GaAs conduc- P 4P

tion-band minimum becomes non-parabolic and M. increases at energies
only slightly removed from f'.t.

After Neudeck and Pierret Tables 3.1 and 4.1
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

We can use the idea quantum confinement of a set of states ( 1D well region) to derive the
number of states in a given volume (volume of our crystal).

Consider the surfaces of a volume of semiconductor to be infinite potential barriers (i.e.
the electron can not leave the crystal). Thus, the electron is contained in a 3D box.

l [ 2
NN VI W= B

n o’y
—— —EY =0
| i , 2m ox’
o— " : m Ox
(b)
. e oo o8 w " 2 2 2
Figure 4.1 (a) Visualization of a conduction band electron moving in a crystal. (b) Idealized LP T
pseudo-potential well formed by the crystal surfaces and the band edges. + + + k 2 LP _ 0
ox>  oy> oz’
c

v for0<x<a,0<y<b,0<z<c

2712
Wherekzz—ﬂz Zmk orE:H

; A h 2m

Figure 4.2 Envisioned crystal-sized box (infinitely deep three-dimensional potential well)
with x, y, and z dimensions of a, b, and ¢, respectively.

After Neudeck and Pierret Figure 4.1 and 4.2
Georgia Tech
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

Using separation of variables...
2 2 2
(1) akf+8T+an+k2\P=O
Ox oy 0z
2) Y(x,y.2)=Y.()¥,(Y.(2)
Inserting (2) into (1) and dividing by (2) we get...
2 R 2
1 0 sz(x) L] yz(y) L, 1@ \Pzz(z) TR
Y(x) o’ Y() o Y.() o

Since k is a constant for a given energy, each of the three terms on the left side must
individually be equal to a constant.

2 52LP 2
1 0 ‘sz(x) LB =0, 1 yz(y) FE =0 1 0 \PZz(z)
Y.(x) ox Y, (y) oy V.(z2) oz

where k* =k’ +ki +k’

+k>=0

— VY

So this is just 3 equivalent 1D solutions which we have already done...
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

Cont’d... Y(x,y,2) =¥ ()Y, (»)Y.(2)
W(x,y,z) = Asin(k x)sin(k, y )sin(k.z)

n zw n,7z n, oz
b ky = 2 V4 -

where k=

==+1,£2,%£3...

a a a

242 2 2 2
7Z'h n n n
and E = (’;+;+2J

nx, ny, nz

Each solution (i.e. each
combination of n, n,, n,)
results in a volume of “k-
space”. If we add up all
possible combinations, we
would have an infinite
solution. Thus, we will only
consider states contained in a
“fermi-sphere” (see next

page).

See Pierret and Neudeck for a
more general approach that
does not require the fermi
sphere argument. Tie this into
the GaAs equi-energy surface
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

Cont’d... " k2
E, = 2— = defines a momentum value for average electron energy E.
m
3
Volume of a single state “cube™: V. .. = (EJ (fj (fj = (”_j
a)\ b))\ c V

43 : %9 4
Volume of a “fermi-sphere”: Vi..ionee = (g” kfr)

A “Fermi-Sphere” 1s
defined by the
number of states in
k-space necessary to
hold all the electrons

“V” is the physical
volume of the
crystal where as all
other volumes used
here refer to volume

needed to add up to - ™ in k-space. Note

the average energy that: V. . is the

of the crystal 8

k o smallest unit in k-
nown as the fermi .

gnergy) Space. Vsmgle state 15

required to “hold” a
single electron.

Georgia Tech ECE 6451 - Dr. Alan Doolittle




How do electrons and holes populate the bands?
Derivation of Density of States Concept

Cont’d... \
k-space volume of a single state “cube™: V. = (Ej (%j (EJ - [”_j
a C

14 . 2 4
k-space volume of a “fermi-sphere™: Vi mee = (—” kff}

3
4 3
Number of filled states |, TR e
. . _ N __ " fermi—sphere 2 1 1 1 _ 3 _ f
in a fermi-sphere: =" T Ve YA CYACY = . =30
AN
Correction for Correction for redundancy in
allowing 2 electrons counting identical states resulting
per state (+/- spin) from +/- n,, +/- n,, +/- n,.

Specifically, sin(-mt)=sin(+m) so the
state would be the same. Same as
counting only the positive octant in
fermi-sphere.
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Cont’d...

Number of filled states Vi 172N )
- : =N=—2L = k, =

in a fermi-sphere: 37 f v

f 2m

Thus,

Georgia Tech

272
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

2
37r2NjA
2
V 2 2 3
= =| E; = f (37Z n)/ where n is the electron density
2m 2m
E, varies in Si from 0 to ~1.1 eV as n varies from 0 to ~5e21cm-
_VE _( v (sz)/
3 B AW
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How do electrons and holes populate the bands?
Derivation of Density of States Concept

Wk _( % j(sz)/
372 372 h?

Finally, we can define the density of states function:

)
G(E) = # of states per energy per volume = dE v
() ()
2372 h’
G(E)=

Cont’d...

%

Applying to the semiconductor we must recognize m—> m* and
since we have only considered kinetic energy (not the potential
energy) we have E 2 E-E_

G(E) = m +2m’ \/7

2h3
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