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Wentzel-Kramers-Brillouin (WKB) Approximation

•The WKB approximation is a “semiclassical calculation” in quantum mechanics in 
which the wave function is assumed an exponential function with amplitude and phase 
that slowly varies compared to the de Broglie wavelength, λ, and is then semiclassically
expanded.

•While, Wentzel, Kramers, and Brillouin developed this approach in 1926, earlier in 
1923, a mathematician, Harold Jeffreys, had already developed a more general method of 
approximating linear, second-order differential equations (the Schrödinger equation is a 
linear second order differential equation). Jeffreys is rarely given his proper credit.

•While technically this is an “Approximation method” not an “Exact solution” to the 
Schrödinger equation and thus should be covered when we discuss Approximation 
Methods in Chapter 4, it’s very close relationship to the simple Plane Wave solutions 
warrants us discussing it now.

•The WKB method is most often applied to 1D problems but can be applied to 3D 
spherically symmetric problems as well (see Bohm 1951 for example).

•The WKB approximation will be especially useful in deriving the Tunnel Current in a 
tunnel diode (see Brennan section 11.6 for example).  This topic will be covered in ECE 
6453 in detail and only briefly introduced here.
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Wentzel-Kramers-Brillouin (WKB) Approximation

The WKB approximation states that since in a constant potential, the wave function 
solutions of the Schrodinger Equation are of the form of simple plane waves, 

if the potential , U→U(x), changes slowly with x, the solution of the Schrodinger 
equation is of the form,

(*)

Where φ(x)=xk(x).  For the constant potential case, φ(x)=±kx so the phase changes 
linearly with x.  In a slowly varying potential, φ(x) should vary slowly from the linear 
case, ±kx .

For the two cases, E>U and E<U, let k(x) be defined as (so we only have to solve the problem 
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Wentzel-Kramers-Brillouin (WKB) Approximation

Using the normalized version of (*) the Schrodinger Equation, 

Becomes, 

The WKB approximation assumes that the potentials are slowly varying.  If this is the 
case, k(x) is also slowly varying and so φ(x) slowly varying.  Thus, the 0th order WKB 
Approximation assumes, 
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order approximation.
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Wentzel-Kramers-Brillouin (WKB) Approximation

If a more accurate solution is required, we can rewrite our previous starting point as, 

So far, no approximation has been made (i.e. this is an exact solution).  

The 1st order WKB approximation assumes that since, 
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Wentzel-Kramers-Brillouin (WKB) Approximation

Some important points about the WKB Approximation:

1) We only need to know the shape of the potential to estimate the wave function since,

2) Since we are limited to slowly varying U(x) (compared to λ), then we can say,

and thus, the 1st order approximation is only slightly different from the 0th order approximation

3) The WKB approximation breaks down at regions where E~U (points when classical particles will 
turn around and change directions – Classical Turning Points).  In this case, the wavevector, k(x), 
approaches zero but its derivative does not.  

In these special cases, connection formulas must be used to tie together regions on either side of 
the classical turning point.  In all other regions WKB is valid (See Merzbacher 1970 for details).

( ) ( ) ( ) ( )( ) ( ) ( )
( )( ) ( ) 








+∫

∂
∂

±±

=Ψ⇒+
∂
∂

±±=⇒⇒ ∫
1

2

x     1
2

Cdxxk
x

ixki

eCdxxk
x

ixkxxkxU φ

( ) ( )( )2xkxk
x

<<
∂
∂

( ) ( ) ( )

( ) ( )( )  true!holdnot  does  clearly  case,  thisIn

0 )(2but      0

2

2

xkxk
x

xUEm
x

i
x
xkxk

<<
∂
∂

≠






 −
∂
∂

−=
∂

∂
=

h



ECE 6451 - Dr. Alan DoolittleGeorgia Tech

Wentzel-Kramers-Brillouin (WKB) Approximation

Example:

Consider the tunneling probability at a finite width 
potential barrier.

But for tunneling to occur, E<U so,
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Variational Methods of Approximation

The concept behind the Variational method of approximating solutions to the Schrodinger 
Equation is based on:

a) An educated guess as to the functional form of the wave function.  Often this is based 
on a similar problem that has an exact solution.

b) A “Variational parameter” that will be adjusted to obtain a minimum in the eigen
energy.

c) Recognition that all natural systems seek the lowest energy state.

Using all of the above, one minimizes the expected energy by iterative methods.
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Harmonic Oscillator

In many physical systems, kinetic energy is continuously traded off with potential energy.   
Thus, as kinetic energy increases, potential energy is lost and vice versa in a cyclic 
fashion.  When the equation of motion follows, 

a Harmonic Oscillator results.  

The term -kx is called the restoring force.

The radian frequency of such an oscillation is,

kxF
dt
xdmma −=== 2

2

( ) ( ) ( )

( ) ( ) ( )xExxmx
dx
d

m

xExkxx
dx
d

m

kx

m
k

Ψ=Ψ+Ψ

Ψ=Ψ+Ψ

=

==

22
2

22

2
2

22

2

2
1

2
-

2
1

2
-

is, potential for this equationr Schrodinge  theThus,
2
1V(x)

-kx Fforce,  thegintegratinby  found be can potential  the   while

ω

ω

h

h

2

2
1V(x) kx=



ECE 6451 - Dr. Alan DoolittleGeorgia Tech

Harmonic Oscillator Solution

The power series solution to this problem is derived in Brennan, section 2.6, p. 105-113 and 
is omitted for the sake of length.  Instead we will only discuss the operator based 
solution.  There is an infinite series of possible solutions described by:

The functions, hn(y) are Hermite polynomials defined by,

And the recursion relation, 
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Harmonic Oscillator Operator Solution

Let us define two operators* as,

which for reasons that will become obvious, we will call the annihilation or lowering 
operator and,

which we will call the creation or raising operator.

Consider the product of these two operators:
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Lets focus on this 
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moment.

*Note: a+ and a- are 
NOT Hermitian!



ECE 6451 - Dr. Alan DoolittleGeorgia Tech

Cont’d:
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What we seek to do now is to eliminate the non-physical variable, y, and cast these results in 
terms of our physical variables x, ω, m, and momentum p.

Harmonic Oscillator Operator Solution
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Cont’d:

Harmonic Oscillator Operator Solution
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Cont’d:

Harmonic Oscillator Operator Solution
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Cont’d:

Acting on the Schrodinger Equation with the creation operator,

Thus, if “Ψ“ is an eigenfunction of (a+a- + 1/2 ) with energy eigenvalue, E/ħω, then so is 
“a+Ψ“ but with an energy eigenvalue of (E+ħω)/ħω. Thus, the raising/creation operator , a+, 
raised the energy of the state by exactly one quantum, ħω.

Similarly, the lowering/annihilation operator, a-, lowers the energy of a state by one 
quantum, ħω.  (This is easily proved by the same procedures using a- instead of a+ - see 
Brennan, page 117).

Using the new form of the Schrodinger Equation:
Harmonic Oscillator Operator Solution
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Cont’d:

Since the energy of the Harmonic Oscillator is never less than zero, some “ground state” Ψ0
must exist for which lowering the energy with the lowering operator, a-, must give zero 
energy. 

Using the new form of the Schrodinger Equation:
Harmonic Oscillator Operator Solution
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Cont’d:

To arrive at all the other higher energy states, we simply apply the raising operator and 
require normalization.  Thus,

But what is Ψ0?

Using the new form of the Schrodinger Equation:
Harmonic Oscillator Operator Solution

( ) ( ) ( )

ϖϖ

ϖ

hh

h







 +=+=

= +

n

Cn

2
1EnE

energy state ground  thenlarger tha nmerely  is stateshigher   theofenergy   theSimilarly,
defined)y (previouslt coefficien ionnormalizat  theis C Where  xΨaxΨ

0n

n0
n

n












−

−

=Ψ

Ψ−=
Ψ

=Ψ







+









+=

=Ψ

2
y-

0

0
0

0

0

2

Ae)(

)(
dy

)(d

0)(
dy
dy

2
1

dy
dy

2
1a

0)(a

x

xyx

x

x



ECE 6451 - Dr. Alan DoolittleGeorgia Tech

Cont’d:

Finding the successive excited states is merely just applying the raising operator.  For 
example the first excited state is:

Other examples left as homework problems.

Using the new form of the Schrodinger Equation:
Harmonic Oscillator Operator Solution
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