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In section 3.1, we solved the two differential equations below where Eq. 3.2.1 is 
dependent on phi and Eq. 3.2.2 which is dependent on theta
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In section 3.2, we will solve the radial dependent differential equation 
and analyze its results in the context of the Hydrogen atom.

(3.2.1)

(3.2.2)
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We will relate our equation to the Hydrogen atom by 
considering the form of V(r).

The differential equation below is the radial dependent component of 
the 3-D Schrödinger Equation in spherical coordinates

(3.2.3)

The potential of the Hydrogen 
atom, V(r) is inversely 
proportional to rr

rV 1~)(
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We will define an operator called the radial-momentum operator

Using this operator we can redefine the differential term of 
the kinetic energy operator in spherical coordinates as 
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(3.2.4)

(3.2.5)

For the skeptics out there, the next slide will illustrate the 
equivalence of Eq. 3.2.5 and the differential term of the kinetic 
energy operator.
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Proof that the radial-momentum operator is equivalent 
to the differential term of the kinetic energy operator:

differential term of 
the kinetic energy 
operator 
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radial-momentum 
operator same as 
the differential 
term of the kinetic 
energy operator
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So rewriting the kinetic energy operator in terms of pr results in 

Using Eq. 3.2.6, Schrödinger's Equation is given by 

where )1( += llλ

(3.2.7)

(3.2.6)
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(3.2.8)
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Substituting and Eq. 3.2.8 into Eq. 3.2.7 

(3.2.9)

Define V(r) (in cgs units) we have 

r
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where Z is the atomic number, q is the charge of an electron and r
is the distance between force center and particle under 
observation.  

(3.2.10)
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ρoar = εoEE =

We can take some steps to make Eq. 3.2.9 dimensionless to 
simplify our analysis. Defining 

no units 

Substituting Eq. 3.2.11 and Eq. 3.2.10 into Eq. 3.2.9 
results in

(3.2.11)
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(3.2.12)

and
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Defining ao and Eo from Eq. 3.2.11 so that Eq. 3.2.12 
is dimensionless 

(3.2.13)

Substituting Eq. 3.2.13 and Eq. 3.2.14 into Eq. 3.2.12 we get the 
dimensionless expression of the Schrödinger's Equation
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(3.2.14)
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ao is known as the Bohr radius which is considered to be the effective 
radius of a Hydrogen atom. To calculate the Bohr radius we must 
consider the cgs units for energy, length and electric charge.

The cgs unit for length is the centimeter.  

The cgs unit for energy is the erg. 

The cgs units for electric charge is 
“electrostatic unit” or esu.  

Conversion between SI and cgs.
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Now let us assume a power series solution to Eq. 3.2.15 of the form

(3.2.16)

Applying the second derivative to the first term in Eq. 3.2.16, 
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Substituting this result into Eq. 3.2.15 and the 
first term of Eq. 3.2.16, we get

(3.2.18)

Equating the coefficients of like powers 

(3.2.19)

Thus 
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Substituting the appropriate values for the physical constants into 
Eq. 3.2.20 and setting Z=1 since we are considering the Hydrogen 
atom, we get

(3.2.21)

Equating the coefficients of ρn-2 leads to

(3.2.22b)

Solving for l in terms of n we get 
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Now, we have defined three quantum numbers – n, l, m – that are 
needed to specify the particles motion in a hydrogen atom. 

What about the wave function of a particle in a 
hydrogen atom?

To accomplish this we will redefine the power series solution 
for Schrödinger's Equation

(3.2.23)

as 
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(3.2.25)

Substituting the above result into Eq. 3.2.9 where V(r) is defined 
as Eq. 3.2.10 and E is defined as Eq. 3.2.20, dividing out the 
exponential terms and simplifying the result, we get  
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(3.2.27)

So the first and second derivatives of g(r) are
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We want to make Eq. 3.2.26 dimensionless so again we 
substitute Eq. 3.2.11 into Eq. 3.2.26
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Substituting Eq. 3.2.11 into Eq. 3.2.27 and Eq. 3.2.28 and 
substituting that result into Eq. 3.2.29 gives us
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Eq. 3.2.30 must equal zero for all ρ.  Therefore the coefficients of the
ρs-2 must sum to zero.

(3.2.31)

The coefficients of the general term, ρs+q-1 are
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Solving for s in terms of l using Eq. 3.2.31 we find

Substituting Eq. 3.2.33 into Eq. 3.2.32 and solving for 
Aq+1 we have

(3.2.33)
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(3.2.34)

Note: 1/ao factor is absorbed by the Aq term. 
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Eq. 3.2.34 can be reexpressed as 

(3.2.35)

Eq. 3.2.35 can be used to find the coefficients of the higher 
order terms of Eq. 3.2.23.   The general wave function for 
the Hydrogen atom is defined by Eq. 3.2.36. 

),()(),,( φθφθ lmYrRr =Ψ (3.2.36)

Eq. 3.2.35 and Eq. 3.2.23 are used to define R(r) in Eq. 3.2.36 
and Ylm(θ,Φ) is defined in Section 3.1.
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