3.2 Hydrogen Atom

Nicholas Brown
ECE 6451
Introduction to the Theory of Microelectronics
Fall 2005

3.2 Hydrogen Atom

In section 3.1, we solved the two differential equations below where Eq. 3.2.1 is dependent on phi and Eq. 3.2.2 which is dependent on theta

$$
\begin{gather*}
-\frac{1}{\Phi} \frac{d^{2} \Phi}{d \phi^{2}}=m^{2} \tag{3.2.1}\\
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\lambda \Theta=\frac{m^{2} \Theta}{\sin ^{2} \theta} \tag{3.2.2}
\end{gather*}
$$

In section 3.2, we will solve the radial dependent differential equation and analyze its results in the context of the Hydrogen atom.

3.2 Hydrogen Atom

The differential equation below is the radial dependent component of the 3-D Schrödinger Equation in spherical coordinates

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right) R+\frac{\lambda \hbar^{2}}{2 m r^{2}} R+V(r) R=E R \tag{3.2.3}
\end{equation*}
$$

We will relate our equation to the Hydrogen atom by considering the form of $\mathbf{V}(\mathbf{r})$.

$$
V(r) \sim \frac{1}{r}
$$

The potential of the Hydrogen atom, $\mathbf{V}(\mathbf{r})$ is inversely proportional to \mathbf{r}

3.2 Hydrogen Atom

We will define an operator called the radial-momentum operator

$$
\begin{equation*}
p_{r}=\frac{\hbar}{i}\left(\frac{d}{d r}+\frac{1}{r}\right) \tag{3.2.4}
\end{equation*}
$$

Using this operator we can redefine the differential term of the kinetic energy operator in spherical coordinates as

$$
\begin{equation*}
\frac{p_{r}{ }^{2}}{2 m} \tag{3.2.5}
\end{equation*}
$$

For the skeptics out there, the next slide will illustrate the equivalence of Eq. 3.2.5 and the differential term of the kinetic energy operator.

3.2 Hydrogen Atom

Proof that the radial-momentum operator is equivalent to the differential term of the kinetic energy operator:

$$
\begin{aligned}
-\hbar^{2} & \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d}{d r}\right)=-\hbar^{2}\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}\right) \\
p_{r}^{2} & =-\hbar^{2}\left(\frac{d}{d r}+\frac{1}{r}\right)\left(\frac{d}{d r}+\frac{1}{r}\right) \\
& \begin{array}{l}
\text { differential term of onetic energy } \\
\text { operator }
\end{array} \\
& =-\hbar^{2}\left(\frac{d^{2}}{d r^{2}}+\frac{1}{r} \frac{d}{d r}-\frac{1}{r^{2}}+\frac{1}{r} \frac{d}{d r}+\frac{1}{r^{2}}\right) \\
& \begin{array}{l}
\text { radial-momentum } \\
\text { operator same as } \\
\text { the differential } \\
\text { term of the kinetic } \\
\text { energy operator }
\end{array}
\end{aligned}
$$

3.2 Hydrogen Atom

So rewriting the kinetic energy operator in terms of $\mathbf{p}_{\mathbf{r}}$ results in

$$
\begin{equation*}
T=\frac{p_{r}{ }^{2}}{2 m}+\frac{L^{2}}{2 m r^{2}} \tag{3.2.6}
\end{equation*}
$$

Using Eq. 3.2.6, Schrödinger's Equation is given by

$$
\begin{array}{rrr}
H \Psi(r)=E \Psi(r) & L^{2} \Psi & =\lambda \Psi \\
\left(\frac{p_{r}{ }^{2}}{2 m}+\frac{L^{2}}{2 m r^{2}}+V(r)\right) \Psi(r)=E \Psi(r) & \text { where } \lambda=l(l+ \\
\left(\frac{p_{r}{ }^{2}}{2 m}+\frac{\hbar^{2} l(l+1)}{2 m r^{2}}+V(r)\right) \Psi(r)=E \Psi(r) &
\end{array}
$$

3.2 Hydrogen Atom

Let $\Psi(r)=\frac{u(r)}{r}$ where $\mathbf{u}(\mathbf{r})$ is an polynomial of \mathbf{r}
Consider

$$
\begin{align*}
p_{r}{ }^{2} \Psi(r) & =p_{r}{ }^{2} \frac{u(r)}{r}=\left(\frac{d}{d r}+\frac{1}{r}\right)\left(\frac{d}{d r}+\frac{1}{r}\right) \frac{u(r)}{r} \\
& =\left(\frac{d}{d r}+\frac{1}{r}\right)\left(\frac{1}{r} \frac{d u}{d r}-\frac{1}{r^{2}} u(r)+\frac{1}{r^{2}} u(r)\right) \\
& =\left(\frac{d}{d r}+\frac{1}{r}\right)\left(\frac{1}{r} \frac{d u}{d r}\right)=\left[\frac{d}{d r}\left(\frac{1}{r} \frac{d u}{d r}\right)+\frac{1}{r^{2}} \frac{d u}{d r}\right] \\
& =\left[-\frac{1}{r^{2}} \frac{d u}{d r}+\frac{1}{r} \frac{d^{2} u}{d r^{2}}+\frac{1}{r^{2}} \frac{d u}{d r}\right]=\frac{1}{r} \frac{d^{2} u}{d r^{2}} \tag{3.2.8}
\end{align*}
$$

3.2 Hydrogen Atom

Substituting $\Psi(r)=\frac{u(r)}{r}$ and Eq. 3.2.8 into Eq. 3.2.7

$$
\begin{align*}
& \frac{-\hbar^{2}}{2 m r} \frac{d^{2} u}{d r^{2}}+\frac{\hbar^{2} l(l+1)}{2 m r^{2}} \frac{u}{r}+V(r) \frac{u}{r}=E \frac{u}{r} \\
& \frac{-\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+\frac{\hbar^{2} l(l+1)}{2 m r^{2}} u+V(r) u=E u \tag{3.2.9}
\end{align*}
$$

Define $\mathbf{V}(\mathbf{r})$ (in cgs units) we have

$$
\begin{equation*}
V(r)=\frac{-Z q^{2}}{r} \tag{3.2.10}
\end{equation*}
$$

where \mathbf{Z} is the atomic number, \mathbf{q} is the charge of an electron and \mathbf{r} is the distance between force center and particle under observation.

3.2 Hydrogen Atom

We can take some steps to make Eq. 3.2.9 dimensionless to simplify our analysis. Defining

$$
\begin{equation*}
r=a_{o} \rho, \quad \text { and } \quad E=E_{o} \varepsilon \tag{3.2.11}
\end{equation*}
$$

Substituting Eq. 3.2.11 and Eq. 3.2.10 into Eq. 3.2.9 results in

$$
\begin{equation*}
\frac{-\hbar^{2}}{2 m} \frac{1}{a_{o}^{2}} \frac{d^{2} u}{d \rho^{2}}+\frac{\hbar^{2} l(l+1)}{2 m a_{o}^{2} \rho^{2}} u-\frac{Z q^{2}}{a_{o} \rho} u=E_{o} \varepsilon u \tag{3.2.12}
\end{equation*}
$$

3.2 Hydrogen Atom

Defining a_{o} and E_{o} from Eq. 3.2.11 so that Eq. 3.2.12 is dimensionless

$$
\frac{Z q^{2}}{a_{o}}=\frac{\hbar^{2}}{m a_{o}{ }^{2}}=E_{o} \begin{align*}
& a_{o}=\frac{\hbar^{2}}{m q^{2} Z} \tag{3.2.13}\\
& E_{o}=\frac{Z^{2} q^{4} m}{\hbar^{2}}
\end{align*}
$$

Substituting Eq. 3.2.13 and Eq. 3.2.14 into Eq. 3.2.12 we get the dimensionless expression of the Schrödinger's Equation

$$
\begin{equation*}
\left[-\frac{1}{2} \frac{d^{2}}{d \rho^{2}}+\frac{l(l+1)}{2 \rho^{2}}-\frac{1}{\rho}\right] u=\varepsilon u \tag{3.2.15}
\end{equation*}
$$

3.2 Hydrogen Atom

a_{0} is known as the Bohr radius which is considered to be the effective radius of a Hydrogen atom. To calculate the Bohr radius we must consider the cgs units for energy, length and electric charge.

Conversion between SI and cgs.

The cgs unit for length is the centimeter.
The cgs unit for energy is the erg.

$$
100 \mathrm{~cm}=1 \mathrm{~m}
$$

$$
1 \mathrm{erg}=1 \mathrm{~g} \cdot \mathrm{~cm}^{2} / \mathrm{s}^{2}
$$

$$
10^{7} \mathrm{erg}=1 \mathrm{~J}
$$

The cgs units for electric charge is "electrostatic unit" or esu.

$$
1 \mathrm{C}=3 \times 10^{9} \mathrm{esu}
$$

$$
\begin{gathered}
a_{o}=\frac{\hbar^{2}}{m q^{2} Z}=\frac{\left(1.05 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{2}\left(\frac{10^{7} \mathrm{erg}}{1 \mathrm{~J}}\right)^{2}}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(\frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}\right)\left(1.6 \times 10^{-19} \mathrm{C}\right)^{2}\left(\frac{3 \times 10^{9} \mathrm{esu}}{1 \mathrm{C}}\right)^{2}(1)} \\
a_{o}=5.29 \times 10^{-9} \mathrm{~cm}=5.29 \times 10^{-11} \mathrm{~m}
\end{gathered}
$$

3.2 Hydrogen Atom

Now let us assume a power series solution to Eq. 3.2.15 of the form

$$
\begin{equation*}
u(\rho)=A_{o} \rho^{n} e^{-\frac{\rho}{n}}+A_{1} \rho^{n} \rho^{1} e^{-\frac{\rho}{n}}+\ldots+A_{q} \rho^{n} \rho^{q} e^{-\frac{\rho}{n}}+\ldots \tag{3.2.16}
\end{equation*}
$$

Applying the second derivative to the first term in Eq. 3.2.16,

$$
\begin{align*}
\frac{d^{2}}{d \rho^{2}}\left(A_{o} \rho^{n} e^{-\frac{\rho}{n}}\right) & =\frac{d}{d \rho}\left[A_{o} n \rho^{n-1} e^{-\frac{\rho}{n}}+A_{o} \rho^{n}\left(-\frac{1}{n}\right) e^{-\frac{\rho}{n}}\right] \\
& =A_{o} \frac{d}{d \rho}\left[n \rho^{n-1}-\frac{\rho^{n}}{n}\right] e^{-\frac{\rho}{n}} \\
& =A_{o}\left[\frac{\rho^{n}}{n^{2}}-2 \rho^{n-1}+n(n-1) \rho^{n-2}\right] e^{-\frac{\rho}{n}} \tag{3.2.17}
\end{align*}
$$

3.2 Hydrogen Atom

Substituting this result into Eq. 3.2.15 and the first term of Eq. 3.2.16, we get

$$
\begin{equation*}
-\frac{1}{2} \frac{\rho^{n}}{n^{2}}-\frac{1}{2} n(n-1) \rho^{n-2}+\frac{l(l+1)}{2} \rho^{n-2}=\varepsilon \rho^{n} \tag{3.2.18}
\end{equation*}
$$

Equating the coefficients of like powers

$$
\begin{equation*}
-\frac{1}{2} \frac{1}{n^{2}} \rho^{n}=\varepsilon \rho^{n} \quad \square \quad \varepsilon=-\frac{1}{2 n^{2}} \tag{3.2.19}
\end{equation*}
$$

Thus

$$
\begin{equation*}
E=E_{o} \varepsilon=\frac{Z^{2} q^{4} m}{\hbar^{2}}\left(-\frac{1}{2 n^{2}}\right)=-\frac{Z^{2} q^{4} m}{2 \hbar^{2} n^{2}} \tag{3.2.20}
\end{equation*}
$$

3.2 Hydrogen Atom

Substituting the appropriate values for the physical constants into Eq. 3.2.20 and setting $Z=1$ since we are considering the Hydrogen atom, we get

$$
\begin{equation*}
E=-\frac{13.6 \mathrm{eV}}{n^{2}} \tag{3.2.21}
\end{equation*}
$$

Equating the coefficients of ρ^{n-2} leads to

$$
\begin{equation*}
\frac{n(n-1)}{2}=\frac{l(l+1)}{2} \tag{3.2.22a}
\end{equation*}
$$

Solving for l in terms of n we get

$$
\begin{gather*}
l^{2}+l-n(n-1)=0 \\
l=n-1 \tag{3.2.22b}
\end{gather*}
$$

3.2 Hydrogen Atom

Now, we have defined three quantum numbers $-n, I, m$ - that are needed to specify the particles motion in a hydrogen atom.

What about the wave function of a particle in a hydrogen atom?

To accomplish this we will redefine the power series solution for Schrödinger's Equation

$$
\begin{equation*}
u=\rho^{s} \sum_{q=0}^{\infty} A_{q} \rho^{q} e^{-\frac{\rho}{n}} \tag{3.2.23}
\end{equation*}
$$

as

$$
\begin{equation*}
u(r)=g(r) e^{-\frac{r}{n a_{o}}} \tag{3.2.24}
\end{equation*}
$$

3.2 Hydrogen Atom

Also

$$
\begin{gather*}
\frac{d u}{d r}=g^{\prime} e^{-\frac{r}{n a_{o}}}-\frac{1}{n a_{o}} g e^{-\frac{r}{n a_{o}}} \\
\frac{d^{2} u}{d r^{2}}=g^{\prime \prime} e^{-\frac{r}{n a_{o}}}-\frac{2}{n a_{o}} g^{\prime} e^{-\frac{r}{n a_{o}}}+\frac{1}{\left(n a_{o}\right)^{2}} g e^{-\frac{r}{n a_{o}}} \tag{3.2.25}
\end{gather*}
$$

Substituting the above result into Eq. 3.2.9 where $\mathbf{V}(\mathbf{r})$ is defined as Eq. 3.2.10 and E is defined as Eq. 3.2.20, dividing out the exponential terms and simplifying the result, we get

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m}\left[g^{\prime \prime}-\frac{2}{n a_{o}} g^{\prime}\right]+\frac{\hbar^{2} l(l+1)}{2 m r^{2}} g-\frac{Z q^{2}}{r} g=0 \tag{3.2.26}
\end{equation*}
$$

3.2 Hydrogen Atom

$\mathbf{g}(\mathbf{r})$ is defined as

$$
\begin{equation*}
g(r)=r^{s} \sum_{q} A_{q} r^{q} \tag{3.2.27}
\end{equation*}
$$

So the first and second derivatives of $\mathbf{g}(\mathbf{r})$ are

$$
\begin{gather*}
g^{\prime}(r)=s r^{s-1} A_{o}+(s+1) r^{s} A_{1}+\ldots+(s+q) A_{q} r^{s+q-1}+\ldots \\
g^{\prime \prime}(r)=s(s-1) r^{s-2}+(s+1) s A_{1} r^{s-1}+\ldots \tag{3.2.28}\\
\ldots+(s+q)(s+q-1) A_{q} r^{s+q-2}+\ldots
\end{gather*}
$$

We want to make Eq. 3.2.26 dimensionless so again we substitute Eq. 3.2.11 into Eq. 3.2.26

$$
\begin{equation*}
\frac{d^{2} g}{d \rho^{2}}-\frac{2}{n} \frac{d g}{d \rho}-\frac{l(l+1)}{\rho^{2}} g+\frac{2}{\rho} g=0 \tag{3.2.29}
\end{equation*}
$$

3.2 Hydrogen Atom

Substituting Eq. 3.2.11 into Eq. 3.2.27 and Eq. 3.2.28 and substituting that result into Eq. 3.2.29 gives us

$$
\begin{align*}
& s(s-1) a_{o}^{s} A_{o} \rho^{s-2}+\ldots+(s+q)(s+q-1) a_{o}^{s+q} A_{q} \rho^{s+q-2}+\ldots \\
& -l(l+1)\left[A_{o} \rho^{s-2}+\ldots+A_{q} a_{o}^{s+q} \rho^{s+q-2}+\ldots\right] \tag{3.2.30}\\
& +\frac{2}{n}\left[s A_{o} a_{o}^{s} \rho^{s-1}+\ldots+(s+q) A_{q} a_{o}^{s+q} \rho^{s+q-1}+\ldots\right] \\
& \quad+2\left[A_{o} a_{o}^{s} \rho^{s-1}+\ldots+A_{q} a_{o}^{s+q} \rho^{s+q-1}+\ldots\right]=0
\end{align*}
$$

3.2 Hydrogen Atom

Eq. 3.2.30 must equal zero for all ρ. Therefore the coefficients of the ρ^{s-2} must sum to zero.

$$
\begin{equation*}
s(s-1)-l(l+1)=0 \tag{3.2.31}
\end{equation*}
$$

The coefficients of the general term, ρ^{s+q-1} are

$$
\begin{align*}
& (s+q+1)(s+q) A_{q+1} a_{o}^{s+q+1}-\frac{2}{n} A_{q} a_{o}^{s+q}(s+q) \\
& -l(l+1) A_{q+1} a_{o}^{s+q+1}+2 A_{q} a_{o}^{s+q}=0 \tag{3.2.32}
\end{align*}
$$

3.2 Hydrogen Atom

Solving for s in terms of / using Eq. 3.2.31 we find

$$
\begin{equation*}
s=l+1 \tag{3.2.33}
\end{equation*}
$$

Substituting Eq. 3.2.33 into Eq. 3.2.32 and solving for A_{q+1} we have

$$
\begin{equation*}
A_{q^{+}} 1=A_{q}\left[\frac{\frac{2}{n}(l+1+q)-2}{(l+q+2)(l+q+1)-l(l+1)}\right] \tag{3.2.34}
\end{equation*}
$$

Note: $1 / a_{0}$ factor is absorbed by the A_{q} term.

3.2 Hydrogen Atom

Eq. 3.2.34 can be reexpressed as

$$
\begin{equation*}
A_{q+1}=A_{q}\left[\frac{\frac{2}{n}(l+1+q)-2}{(q+1)(q+2 l+2)}\right] \tag{3.2.35}
\end{equation*}
$$

Eq. 3.2.35 can be used to find the coefficients of the higher order terms of Eq. 3.2.23. The general wave function for the Hydrogen atom is defined by Eq. 3.2.36.

$$
\begin{equation*}
\Psi(r, \theta, \phi)=R(r) Y_{l m}(\theta, \phi) \tag{3.2.36}
\end{equation*}
$$

Eq. 3.2.35 and Eq. 3.2.23 are used to define $R(r)$ in Eq. 3.2.36 and $Y_{\mathrm{lm}}(\theta, \Phi)$ is defined in Section 3.1.

Peferences

- Brennan, Kevin F, "The Physics of Semiconductors with applications to Optoelectronic Devices."
- http://www.physics.utoronto.ca/~jharlow/teaching/Units.htm
- Halliday, D., Resnick, R., Walker, "Fundamentals of Physics"

