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Approximation Solutions of the Boltzmann Equation (Section 6.2)

General Solution

General Boltzmann equation (BTE) is 

which is a integral-differential equation.  In order to find the solution, drastic 
approximations have to be used, which are often invalid for the particular situation.  
Therefore, a technique based on the relaxation time approximation is use to solve 
for the Boltzmann equation.  It should be noted that this approximation does not 
always work, but because it greatly reduces the complexity of the Boltzmann 
equation and a closed form solution can be obtained, it will be investigated here.  
For cases that the approximation can not be used, more sophisticated methods 
such as drift-diffusion and the Monte Carlo method (Section 6.3) should be used.      
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Approximation Solutions of the Boltzmann Equation (Section 6.2)

Issues (how to solve it?)

The problem with the Boltzmann equation is the integral scattering term.  As a 
approximation, let’s replace it with a constant relaxation term, which reduces the 
original integral-differential equation into only a differential equation.  In addition, 
the partial derivative of the distribution function with respect to time due to 
collisions is assumed to be inversely proportional to a lifetime that characterizes 
the mean free time between collisions.  Hence, if      is the equilibrium distribution 
function and      is the nonequilibrium distribution function for which the Boltzmann 
equation is solved, the left hand side of the Boltzmann equation changes to                           

Equation (2) shows that the system will relax to equilibrium after time   , which is 
the relaxation time and represents the average time it takes for the system to relax 
from the nonequilibrium state to the equilibrium state through collisions.
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Approximation Solutions of the Boltzmann Equation (Section 6.2)

Further Investigation

Apply electric field       with                  (no diffusion gradient), at t<0 Boltzmann 
equation becomes

then      is removed, so for t>0 Boltzmann equation reduces to

Using (2) and adding      into the derivative (since              ), 

the above differential equation is solved through        
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Approximation Solutions of the Boltzmann Equation (Section 6.2)

Further Investigation (Cont’d)

After substituting (6) into (5), (5) evaluates to 

From the above results, it’s clear that as t→∞, relaxes to     , however, the 
system doesn’t need that much time, it will achieve equilibrium when t=  .  

Again, how does the system relax? (Clemson student’s answer: by sitting on the couch?)

The system completely relaxes through scattering(collision) events. If scattering 
doesn’t take place, the rate change(8) of the nonequilibrium state becomes zero, 
which means that there is no possible solution for (7) such that    will relax to      .  
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Approximation Solutions of the Boltzmann Equation (Section 6.2)

Uniform Electric Field

Uniform electric field is applied to a steady state system such that there’s no spatial 
gradient, hence 

before approximations the BTE is

with the above assumptions, the BTE becomes
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Approximation Solutions of the Boltzmann Equation (Section 6.2)

Uniform Electric Field (Cont’d)

Assume field is only in z direction, and    is not far from     , which can be equated to 
the Maxwellian.
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Approximation Solutions of the Boltzmann Equation (Section 6.2)

Uniform Electric Field (Cont’d)

equilibrium
nonequilibrium

v=0

Equation (16) completely describes the distribution function of the nonequilibrium 
state, and it is clear that the nonequilibrium state is just shifted version of the 
equilibrium state (Figure 6.2.1 in book), whereas the equilibrium distribution function 
is centered about v=0 (avg. v=0).  

So why is this “slight” shift so important?
The current density was determined for the equilibrium case earlier (current density is 
zero at equilibrium), but with the shift in the distribution the current density for the 
nonequilibrium case becomes non-zero.
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Approximation Solutions of the Boltzmann Equation (Section 6.3)

Current Density

Current density is defined as

the average velocity for the nonequilibrium case is not zero, so current density is not 
zero.
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Approximation Solutions of the Boltzmann Equation (Section 6.3)

Current Density (Cont’d)
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Approximation Solutions of the Boltzmann Equation (Section 6.3)

Current Density (Cont’d)

m
q

F
vu
o

z τ
==

From equation (23), the current density for a nonquilibrium state is not zero and the 
subsequent parameters of electron mobility u (25) and conductivity     (24) are also 
derived for the nonequilibrium case.
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Approximation Solutions of the Boltzmann Equation (Section 6.2)

Example

Consider a uniform isotropic substance at constant temperature in the presence of a 
constant applied electric field F.  If steady state conditions are achieved, the 
nonequilibrium distribution function can be written as

Determine the parameter    .
Solution: Remember that if an uniform electric field is applied un steady state 
conditions,
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Can you find the 
current density???


