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Lecture XXX

Approximation Solutions to Boltzmann
Equation: Relaxation Time Approximation

Readings: Brennan Chapter 6.2 & Notes
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Approximation Solutions of the Boltzmann Equation (Section 6.2)

General Solution

General Boltzmann equation (BTE) is
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(1)

which is a integral-differential equation. In order to find the solution, drastic
approximations have to be used, which are often invalid for the particular situation.
Therefore, a technique based on the relaxation time approximation is use to solve
for the Boltzmann equation. It should be noted that this approximation does not
always work, but because it greatly reduces the complexity of the Boltzmann
equation and a closed form solution can be obtained, it will be investigated here.
For cases that the approximation can not be used, more sophisticated methods
such as drift-diffusion and the Monte Carlo method (Section 6.3) should be used.
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Approximation Solutions of the Boltzmann Equation (Section 6.2)

Issues (how to solve it?)

The problem with the Boltzmann equation is the integral scattering term. As a
approximation, let’s replace it with a constant relaxation term, which reduces the
original integral-differential equation into only a differential equation. In addition,
the partial derivative of the distribution function with respect to time due to
collisions is assumed to be inversely proportional to a lifetime that characterizes
the mean free time between collisions. Hence, if f,, is the equilibrium distribution
function and f is the nonequilibrium distribution function for which the Boltzmann
equation is solved, the left hand side of the Boltzmann equation changes to

a9 __ Sl
(at Jcollisions j 4 (2)

Equation (2) shows that the system will relax to equilibrium after time 7, which is
the relaxation time and represents the average time it takes for the system to relax
from the nonequilibrium state to the equilibrium state through collisions.
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Approximation Solutions of the Boltzmann Equation (Section 6.2)

Further Investigation

Apply electric field F, with V,f =0 (no diffusion gradient), at t<0 Boltzmann
equation becomes

0 F - 0
g - 4% 'va(x,v,t)+(lj (3)
ot ot collisions
then £, is removed, so for t>0 Boltzmann equation reduces to
(DM
Ot ot collisions
. af
Using (2) and adding f, into the derivative (si =0),
Sir-pp=-Lt ®
T
the above differential equation is solved through ;
y=(f-1,) y__y y=y,e° 6)
dt 5
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Approximation Solutions of the Boltzmann Equation (Section 6.2)

Further Investigation (Cont'd)

After substituting (6) into (5), (5) evaluates to

O =1, +1fO0)-fle * (7)

From the above results, it’s clear that as t—«, f relaxes to fo, however, the
system doesn’t need that much time, it will achieve equilibrium when t=7.

Again, how does the system relax? (Clemson student's answer: by sitting on the couch?)

The system completely relaxes through scattering(collision) events. If scattering
doesn’t take place, the rate change(8) of the nonequilibrium state becomes zero,
which means that there is no possible solution for (7) such that f will relax to fo :

d _ 8
o 0 (8)
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Approximation Solutions of the Boltzmann Equation (Section 6.2)

Uniform Electric Field

Uniform electric field is applied to a steady state system such that there’s no spatial

gradient, hence P
V.f=0 8_ft =0 (9)
before approximations the BTE is
of F _ _ 0
f+ e’Ct-VVf+v-fo:(ij (10)
ot i Ot collisions
with the above assumptions, the BTE becomes
For of Jf -7
ext.vvf:(_j —— 0 (11)
m Ot collisions 4
Fext = _qFO
o Z9EYY S (12)
m T
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Approximation Solutions of the Boltzmann Equation (Section 6.2)

Uniform Electric Field (Cont'd)

Assume field is only in z direction, and f is not far fromfo , which can be equated to

the Maxwellian. .
‘IFoTi:f_fo 9 Y [ = T (13)
m  Ov, v, Ov,
mv2 mv2
ov, Ov, Ov, kgT
sz
qFOT my, szT v.f=f—-f,
= 10" = 15
e =S 1, kBT (15)
gl v, 3 qFO(vcosﬁ)r}
= f=f|1-212= = f_fo{l— (16)
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Approximation Solutions of the Boltzmann Equation (Section 6.2)
Uniform Electric Field (Cont'd)
Equation (16) completely describes the distribution function of the nonequilibrium
state, and it is clear that the nonequilibrium state is just shifted version of the

equilibrium state (Figure 6.2.1 in book), whereas the equilibrium distribution function
is centered about v=0 (avg. v=0).

f(kz)

=

nonequilibrium

eQuiIibriu_r.n// \

v=0
So why is this “slight” shift so important?

The current density was determined for the equilibrium case earlier (current density is
zero at equilibrium), but with the shift in the distribution the current density for the
nonequilibrium case becomes non-zero.
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Approximation Solutions of the Boltzmann Equation (Section 6.3)

Current Density

Current density is defined as

]Z —nqv (17)
the average velocity for the nonequilibrium case is not zero, so current density is not
zero.
IV f(v)D(v)a’3 2m’ Vol
v, D()d3y = dv, dv dv, (18)
[ f0)D)d )

LI ag, (v){l - 4F OWCOSQ:|VCOS 2 dvsin 06
o kT
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Io Io Io dﬁo("){l— kT }v dvsin 6d 6

(19)

J.(;rcosﬁsianH—O

. dodv
=7 2 (20)

Z Io .[o I()z ", (v’ sin @dvd 0
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Approximation Solutions of the Boltzmann Equation (Section 6.3)

Current Density (Cont'd)

Igzcosz fdsinédld =2/3
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Approximation Solutions of the Boltzmann Equation (Section 6.3)

Current Density (Cont'd)

_9q7

. (25)

o

From equation (23), the current density for a nonquilibrium state is not zero and the
subsequent parameters of electron mobility u (25) and conductivity o (24) are also
derived for the nonequilibrium case.
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Approximation Solutions of the Boltzmann Equation (Section 6.2)

Example

Consider a uniform isotropic substance at constant temperature in the presence of a
constant applied electric field F. If steady state conditions are achieved, the
nonequilibrium distribution function can be written as

f=rA+4)
Determine the parameter 4.
Solution: Remember that if an uniform electric field is applied un steady state

conditions,
f:f{l_qFo(vcosﬁ)r}
0 k5T Can you find the
ity 2?27
[ gF,(veost)r current density?7?*
= f0<1+z>—f{1 e }
— ﬂ__qFO(vcosé?)r
- ksT

Georgia Insitute of
Technology ECE 6451-Hua Fan 12



