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In Chapter 7.4 the wave function in a crystal was rewritten as a Bloch function to show the 
periodicity in the crystal’s lattice

where k is defined as the crystalline momentum

If this wave function is substituted into the Schrödinger's Equation then it becomes

Taking the Laplacian of the term                  yields:

Substitute this into the previous equation

Substitution of Bloch function into Schrödinger's Equation
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(cont’d)

Remember that the linear momentum operator is defined as

Substitute in p to get

Now choose a specific point in k-space labeled k0. 
Since unk(r) forms a complete set for any given k, then the wave function for any value of
k can be written in terms of k0 as the summation

where n’ is a dummy variable

Substitution of Bloch function into Schrödinger's Equation
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Evaluation around k = k0

Define the Hamiltonian operator at the point k = k0 to be 

Then        equals

Substituting the new value of        into the expanded Schrödinger's Equation yields

Set the potential voltages to be equal so they cancel each other out
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Integration over all space

Substitute in the expanded form of unk(r) to get

Now multiply all terms by       and integrate over all space

Break the integration into four separate terms

A.

B.

C.

D.
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Integration of separated terms

For term A:

Since Hk0 is the Hamiltonian for k = k0 then from the reduced Schrödinger's equation it is
possible to derive                      

Where          is defined as the energy for k set to k0

The equation then becomes 

Which integrates to 

The kroniger delta is zero for all terms except when n’ is equal to n.
Therefore term A reduces to 
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Integration of separated terms

For term B:

Define      so that 

then term B reduces to

Term C:

Term D:

Putting all the terms together you get
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Integration of separated terms

(cont’d)

This leads to a matrix that is of the form:

A solution to the matrix can be found by implementing perturbation theory
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Solution through perturbation theory

A zero order approximation for the energy for each state is given by disregarding the
values that are not on the diagonal of the matrix. Therefore the energy for each state is:

The first order approximation term is obtained by setting the perturbation Hamiltonian to

The energy level for the first term then becomes

Then define      to be

The first order energy is then
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Second order approximation

The second order approximation term is obtained by 

The total energy eigenvalue is arrived at by combining the zero, first, and second order
approximations
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Special cases for k·p

Now consider the case where the crystal is symmetric in every direction from point k0. If
this were to occur then the first order correction term    would go to zero.

If k0 were set to zero and was also at a center of the symmetry for the crystal then the
energy eigenvalue would be reduced to

An equation for the effective mass in the crystal can be obtained by rewriting the energy
equation as 

Where      is defined as an effective mass tensor that represents the curvature of the E-k
diagram versus the direction in k-space. The effective mass will be different depending 
on the direction in k-space.
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Uses for the k·p approximation

The k·p approximation is useful for approximating the band gap energy for materials that
have low band gaps, such as InN. This is because as the difference in energy between
states becomes larger, then the factor             causes the second order correction term
becomes smaller and smaller.
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