Knowledge Integration in ASR

Eric Fosler-Lussier
The Ohio State University
8 October 2003
Outline
(or, rather, my list of questions)

• What is Knowledge Integration (KI)?
• How has KI influenced ASR to date?
• Where should KI be headed?
 – What types of cues should we be looking for?
 – How should cues be combined?
What is Knowledge Integration?

• It means different things to different people
 – Combining multiple hypotheses
 – Bringing linguistic information to bear in ASR
• Working definition:
 – Combining multiple sources of evidence to produce a final (or intermediate) hypothesis
 – Traditional ASR process uses KI
• Combines acoustic, lexical, and syntactic information
• But this is only the tip of the iceberg
KI examples in ASR

- Acoustic model gives state hypotheses from features
- Search integrates knowledge from acoustic, pronunciation, and language models
- Statistical models have “simple” dependencies
KI: Statistical Dependencies

- “Side information” from the speech waveform
 - Speaking rate
 - Prosodic information
 - Syllable boundaries

The cat chased the dog
KI: Statistical Dependencies

- Information from sources outside “traditional” system
- Class n-grams, CFG/Collins-style parsers
- Sentence-level stress
- Vocal-tract length normalization

The cat chased the dog
KI: Statistical Dependencies

- Information from “internal” knowledge sources
- Pronunciations w/ multi-words, LM probabilities
- State-level pronunciation modeling
- Buried Markov Models

The cat chased the dog

<table>
<thead>
<tr>
<th>Feature Calculation</th>
<th>Acoustic Modeling</th>
<th>Pronunciation Modeling</th>
<th>Language Modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>k@t</td>
<td>dog: dog</td>
<td>cat: k@t</td>
<td>cat dog: 0.00002</td>
</tr>
<tr>
<td>mail: mAl</td>
<td>the: D&, DE</td>
<td>the cat: 0.029</td>
<td>the cat: 0.031</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the mail: 0.054</td>
<td></td>
</tr>
</tbody>
</table>

The cat chased the dog
KI: Statistical Dependencies

- Information from errors made by system
- Discriminative acoustic, pronunciation, and language modeling
KI: Model Combination

- Integrate multiple “final” hypotheses
- ROVER
- Word sausages (Mangu et al.)
KI: Model Combination

- Combine multiple “non-final” hypotheses
- Multi-stream modeling
- Synchronous phonological feature modeling
- Boosting
- Interpolated language models
Summary: Current uses of KI

• Probability conditioning
 $P(A|B) \rightarrow P(A|B,X,Y,Z)$
 – More refined (accurate?) models
 – Can complicate overall equation

• Model merging
 $P(A|B) \rightarrow f(P_1(A|B),w_1) + f(P_2(A|B),w_2)$
 – Different views of information are (usually) good
 – But sometimes combination methods are not as principled as one would like
Where should we go from here?

- As a field have investigated many sources of knowledge
 - We learn more about language this way
 - Cf. “More data is better data” school
- To make an impact we need
 - A common framework
 - Easy ways to combine knowledge
 - “Interesting” sources of knowledge
KI in Event-Driven ASR

- Phonological features as events (from Chin’s proposal)

- mid-low
- closure
- burst
- nasal
- consonant
- vowel
- consonant
- back
- alveolar

-can’t
KI in Event-Driven ASR

- Integrating multiple detectors
 - Easy if detectors are of the same type
 - Use both conditioning and model combination

```
[Diagram with labels: mid-low, closure, burst, nasal, consonant, vowel, consonant, back, alveolar, P(back|detector1), P(back|detector2), can't]
```
KI in Event-Driven ASR

• Integrating multiple cross-type detectors
 – Simplest to use Naïve Bayes assumption
 \[
P(X|e1,e2,e3) = \frac{(P(e1|X)P(e2|X)P(e3|X)P(X))}{Z}
\]

\(P(k|\text{features}) \)

\text{can't}
KI in Event-Driven ASR

• Breakdown in Naïve Bayes
 – Detectors aren’t always independent

New (possibly) non-independent detector

Feature spreading correlated with vowel raising

can’t
KI in Event-Driven ASR

• Wanted: Gestalt detector
 – View overall shape of detector streams

\[P(\text{can’t}|\) \]
The Challenge of Plug-n-Play

• Shouldn’t have to re-learn entire system every time a new detector is added
 – Can’t have one global P(can’t|all variables)
 – Changes should be localized
 • Implies need for hierarchical structure

• Composition structure should enable combination of radically different forms of information
 – E.g., audio-visual speech recognition
The Challenge of Plug-n-Play

• Perhaps need three types of structures
 – Event integrators
 • Is this a CVC syllable?
 • Problems like feature spreading become local
 – Hypothesis generators
 • I think the word “can’t” is here.
 • Combines evidence from top-level integrators
 – Hypothesis validators
 • Is this hypothesis consistent?
 • Language model, word boundary detection, ...

• Still probably have Naïve Bayes problems
What type of detectors should we be thinking about?

- Phonological features
- Phones
- Syllables? Words? Function Words?
- Syllable/word boundaries
- Prosodic stress
- ... and a whole bunch of other things
 - We’ve already looked at a number of them
 - And Jim’s already made some of these points
Putting it all together

• Huge multi-dimensional graph search
• Should not be strictly “left-to-right”
 – “Islands of certainty”
 – People tend to emphasize the important words
 • ...and we can usually detect them better
 – Work backwards to firm up uncertain segments
Summary

• As a field, we have looked at many influences on our probabilistic models
• Have gained expertise in
 – Probability conditioning
 – Model combination
• Event-driven ASR may provide challenging, but interesting framework for incorporating different ideas