

SiGe Research Activities

John D. Cressler

Byers Professor School of Electrical and Computer Engineering 777 Atlantic Drive, N.W. Georgia Institute of Technology Atlanta, GA 30332-0250 USA

cressler@ece.gatech.edu http://users.ece.gatech.edu/~cressler/ Tel (404) 894-5161 / FAX (404) 894-4641

SiGe: Why The Fuss?

- wireless + wireline + transportation + satellites + radar + other DoD + ...

Georgialnstit of Technolog

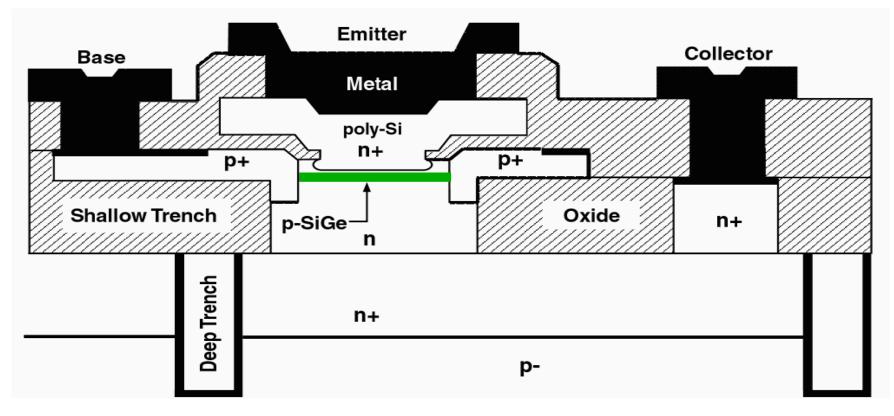
→ frequency bands are pushing ever higher

➡ huge market but stringent device requirements

Moral: Need High-Performance Device Technology at Low-Cost!

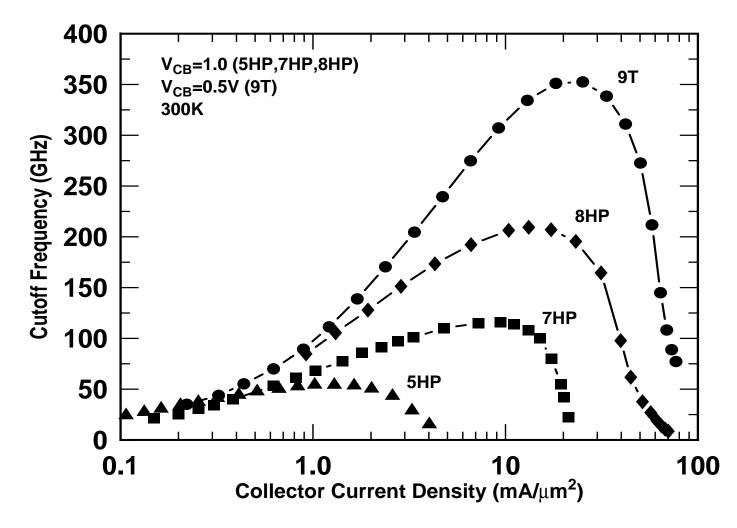
• The SiGe HBT

- first bandgap-engineered Si transistor (nanotechnology!)
- better β , V_A, f_T, f_{max}, NF_{min} than Si BJT
- III-V performance + Si fabrication yield and cost (win-win scenario!)
- 200 GHz SiGe HBTs are a reality! ... 300 GHz is on the way!

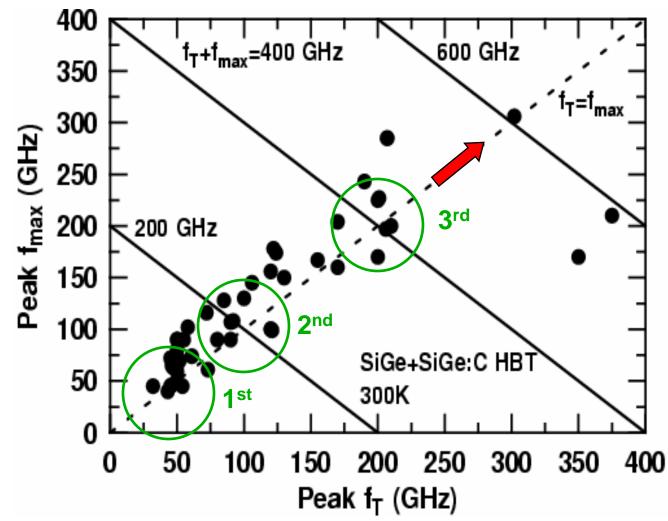

SiGe HBT BiCMOS Technology

- very high performance SiGe HBT + best-of-breed Si CMOS
- RF/MMIC + analog + digital + passives for integrated SoC / SiP solutions
- in production (e.g., IBM, Jazz, National, TI, ST, Infineon, Hitachi, etc...)

The SiGe HBT


Georgia Institute of Technology

- Conventional Shallow and Deep Trench Isolation + CMOS BEOL
- Unconditionally Stable, UHV/CVD SiGe Epitaxial Base
- 100% Si Fabrication Compatibility
- SiGe HBT + Si CMOS on the same wafer



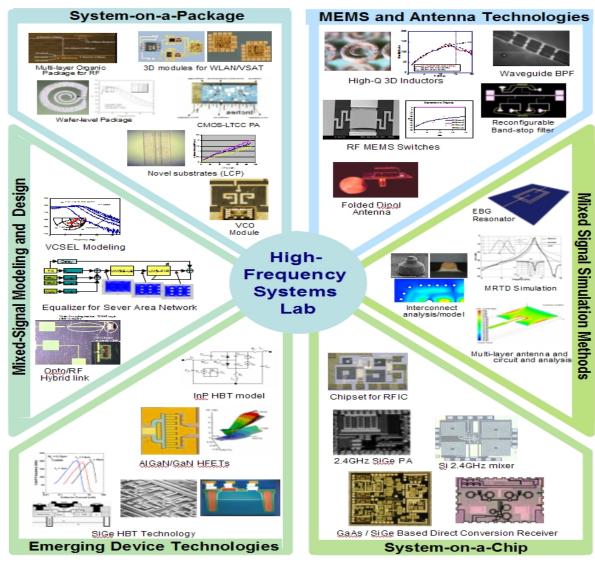
• Unprecedented Device Performance in Si!

Generational Evolution (full BiCMOS)

SiGe for Mixed-Signal

Georgia Institute of Technology

• The Virtues of SiGe HBTs


- high g_m
- low $\mathrm{NF}_{\mathrm{min}}$
- very low power dissipation at NF_{min}
- low 1/f noise corner + phase noise
- very high output resistance and high βV_A product
- very high frequency response (can trade f_T for power!)
- high power gain
- good linearity
- potential for operation at cryogenic temperatures / high temperatures
- all device parameters are in principle tunable!
- high levels of integration + passives + t-lines
- built-in total dose radiation tolerance
- CMOS is already on-board to use where needed / beneficial

Moral: SiGe is a Natural for Mixed-Signal!

High-Frequency Systems Lab - Research Facilities -

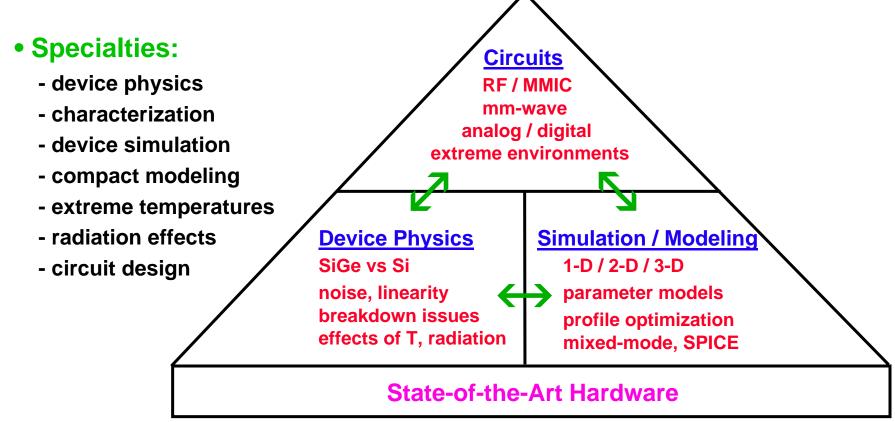
The 5th Floor Team: Professors Laskar, Tentzeris, Papapolymerou, and Cressler Theme: "Devices-to-Systems"

Research Specialties:

- Device / Circuit Characterization
- Compact Modeling
- Device Optimization
- Analog / Digital / RF Circuit Design
- RFIC / MMIC Design
- Advanced Integrated Modules
- Packaging / Interconnects
- mm-wave Circuits / Modules
- Antennas
- Embedded Passives
- RF MEMS
 - (Switches, Tunable Filters ...)
- Computational Electromagnetics
- Transmission Lines
- Mixed-signal ICs / Systems for High-Speed Digital Applications

High-Frequency Systems Lab - Research Facilities -

The 5th Floor Team: Professors Laskar, Tentzeris, Papapolymerou, and Cressler


- Exhaustive Device and Circuit Characterization Capability
- dc 100 GHz; 4K to 500C; fA to A, uV to kV
- Lab Manager Oversight
- Web-based Instrument Scheduling

Research Program

• Focus: "SiGe Devices and Circuits"

Fundamental device physics, fabrication, device and circuit characterization, RF / microwave / mm-wave properties of devices, profile optimization for specific circuit / system applications, device-to-circuit interactions, device simulation, compact modeling, and circuit design

- SiGe Millimeter-wave Communications Systems
 - 60 GHz ISM band (> 1Gb/sec wireless links)
 - wavelength at mm-wave enables monolithic antennae integration
- SiGe Radar Systems
 - defense theater radar (10 GHz)
 - automotive radar (24 GHz, 77 GHz, 94 GHz)
- SiGe Core Analog Functions
 - data converters (10Gb/sec 8 bit ADC!)
 - references, op-amps, drivers, etc.
- SiGe Extreme Environment Electronics
 - cryogenic temperatures (e.g., to 77K or 4K)
 - radiation (e.g., space)
 - high-temperatures (e.g., to 200C or 300C)

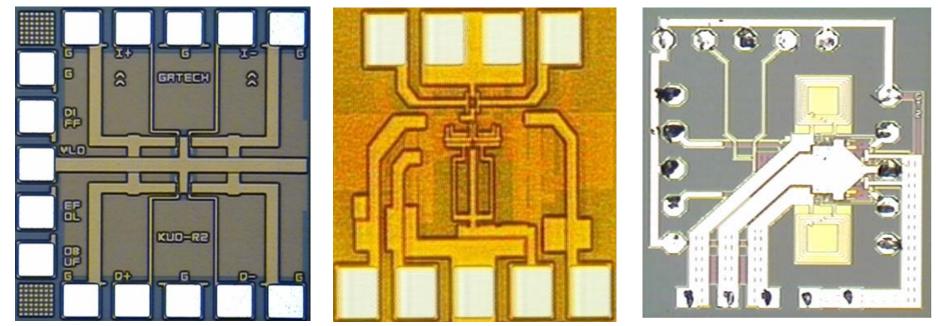
Current Activities (10/05) Georgialnstitute of Technology

SiGe Devices and Circuits

- Profile optimization issues, stability limits, and new device physics phenomena
- RF / microwave / mm-wave understanding of noise and linearity
- Understanding device-to-circuit interactions
- Radiation effects in devices and circuits (total dose + SEU + RHBD)
- Breakdown limits and voltage constraints and their impact on circuit design
- 1/f noise physics, microscopic noise simulation, and its up-conversion to phase noise
- Reliability physics and geometrical scaling / thermal issues
- New de-embedding techniques for mm-wave characterization of devices / circuits
- 2-D / 3-D device-level simulation and compact circuit modeling issues
- Cryogenic operation of devices and circuits
- Circuit Design Thrusts:
- transceiver building blocks (high RF to mm-wave)
- SiGe radar (X-band and up)
- high-speed analog (ADC, op-amps, etc.)
- radiation-hardened digital logic (SEU)
- specialized circuits (UWB LNA, cryogenic amps, etc.)

• Other Stuff

- SiC devices for high-power / high-temperature switching systems, SOI CMOS, etc.


Personnel

- 15 PhD, 3 MS, 2 post-doc, 4 UG

Cressler – SiGe Circuits Georgia Institute of Technology

• Major Circuit Design Thrusts in Cressler's Team:

- transceiver building blocks (high RF to mm-wave)
- SiGe monolithic radar T/R modules (X-band to W-band)
- high-speed data converters (ADC, DAC, opamps, references, etc.)
- radiation-hardened mixed-signal circuits (RHBD for SEU + TID)
- specialized circuits (UWB, cryogenic circuits, switches, T-lines, etc.)

21 GHz Oscillator

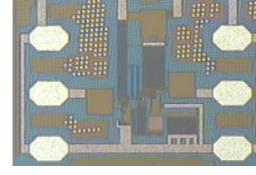
33 GHz VCO

8b 12 GS/sec T/H Amp

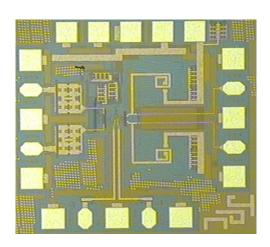
13

Cressler – SiGe Circuits Georgia Institute of Technology

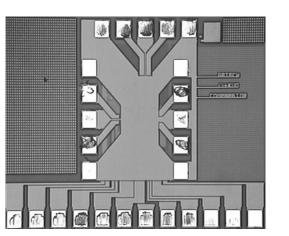
Active Isolator

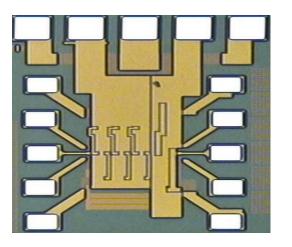

10 GHz Down-Mixer

Balun


5 GHz Active Mixer with Isolator

24 GHz Limiting Amp


Mixer


3-10 GHz UWB LNA



7b 18 GHz Comparator

