

Cloud Computing Overview*

*some material excerpted from slides of

Roy Campbell, Reza Farivar at UIUC

ECE 6102

Part 1: Background and Cloud Basics

Critical Systems
Laboratory

What is Cloud Computing??

NIST Definition - July 2011:

“Cloud computing is a model for enabling
ubiquitous, convenient, on-demand network
access to a shared pool of configurable
computing resources (e.g., networks, servers,
storage, applications, and services) that can be
rapidly provisioned and released with minimal
management effort or service provider
interaction.”

Critical Systems
Laboratory

Cloud Characteristics

l  On-demand self service
l  Ubiquitous network access
l  Location-independent resource pooling
l  Rapid elasticity
l  Multi-tenancy

–  Different cloud apps run in the same massive datacenters using
the same resources

l  Pay per use
–  Metered access, utility computing
–  Amazon EC2: current prices range from $0.10/hour to $3.20/

hour for one general-purpose VM depending on resource needs

Critical Systems
Laboratory

Cloud Security Concerns

l  Reluctance to store and operate on sensitive data in
clouds
–  Multi-tenancy: sharing of resources between different users,

who might even be direct competitors
–  Cloud platform provider has full and unfettered access to file

systems and even VM state(application memory)

l  Encryption works well for cloud data storage and
retrieval but what about applications?

l  Operating on encrypted data is a hot research topic

Critical Systems
Laboratory

Utility Computing

“Computing may someday be organized as a
public utility, just as the telephone system is

organized as a public utility.”

John McCarthy, 1961

Critical Systems
Laboratory

Perils of Corporate Computing

l  Own information systems J

l  However
–  Capital investment L
–  Heavy fixed costs L
–  Redundant expenditures L
–  High energy cost, low CPU utilization L
–  Dealing with unreliable hardware L
–  High-levels of overcapacity (Technology and Labor) L

NOT SUSTAINABLE

Critical Systems
Laboratory

Google: CPU Utilization

Ac#vity	
 profile	
 of	
 a	
 sample	
 of	
 5,000	
 Google	
 Servers	
 over	
 a	
 period	
 of	
 6	
 months	

Critical Systems
Laboratory

Utility Computing

l  Let economy of scale prevail
l  Outsource all the trouble to someone else
l  The utility provider will share the overhead costs

among many customers, amortizing the costs
l  You only pay for:

–  the amortized overhead
–  Your real CPU / Storage / Bandwidth usage

l  Great for start-ups: start small and expand easily when
things take off!!

Critical Systems
Laboratory

Dynamic Provisioning

Service
demand

Data Center

S

S

S

S

S
S

S

S

Critical Systems
Laboratory

Why Utility Computing Now

l  Large data stores
l  Fiber networks
l  Commodity computing
l  Multicore machines

+
l  Huge data sets
l  Utilization/Energy
l  Shared people

U#lity	
 Compu#ng	

Critical Systems
Laboratory

Delivery Models

l  Cloud provider direct to consumer
–  gmail, other Google apps
–  Apple iCloud
–  Amazon s3
–  Microsoft Office 365

l  Cloud provider to service provider to consumer
–  Netflix runs on Amazon Web services
–  Snapchat runs on Google App Engine

Critical Systems
Laboratory

Delivery Models (continued)

l  Software as a Service (SaaS) (CP direct to consumer)
–  Use provider’s applications over a network
–  SalesForce.com, gmail

l  Platform as a Service (PaaS) (CP to SP to consumer)
–  Deploy customer-created applications to a cloud
–  Google App Engine, Microsoft Azure .NET

l  Infrastructure as a Service (IaaS) (CP to SP to consumer)
–  Rent processing, storage, network capacity, and other fundamental

computing resources
–  Run whatever software platform you want with app on top of it
–  Amazon EC2, S3

13	

Critical Systems
Laboratory

Software Stack

Mobile (Android), Thin client (Zonbu) Thick client
(Google Chrome)

Identity, Integration Payments, Mapping, Search,

Video Games, Chat

Peer-to-peer (Bittorrent), Web app (twitter), SaaS

(Google Apps, SAP)

Java Google Web Toolkit, Django, Ruby on

Rails, .NET

S3, Nirvanix, Rackspace Cloud Files, Savvis,

Full virtualization (GoGrid), Management

(RightScale), Compute (EC2), Platform
(Force.com)

Services	

Applica-on	

Pla1orm	

Storage	

Infrastructure	

Critical Systems
Laboratory

Technologies Enabling Cloud Growth

l  Virtualization, Containers
–  Apps/services run in virtual machines or containers that can run on

any physical machine in data center
–  Facilitates load balancing (VM migration) and app elasticity (add more

VMs as demand increases, eliminate VMs as demand decreases)
l  REST

–  REpresentational State Transfer
–  Simplified programming paradigm for delivering services via the Web

(http)
l  Big Data technologies

–  Hadoop/MapReduce/Dataflow for processing large amounts of data
–  noSQL for storing/retrieving large amounts of data

Part 2: Technology Overview

Critical Systems
Laboratory

Full Virtualization

Hardware + Host OS Host
Virtualizing Software Hypervisor (VMM)

Guest OS Virtual Machine
Application/Service Application Level VM

image

Critical Systems
Laboratory

Full Virtualization, continued

l  Examples of full virtualization: KVM, Xen, VMware

l  With virtualization, multiple VMs (even with different
operating systems) can run over one VMM on the
same physical machine

l  Different VMs are strongly isolated from each other
–  One VM cannot access any resources (memory, file system,

network connections) of another VM
–  This is enforced by the VMM and provides a security

guarantee to VM owners (assuming VMM is not compromised)

Critical Systems
Laboratory

Containers

Hardware
Host Operating System

Container Engine
Container (Process Group) Application Level

Lightweight Virtualization

Critical Systems
Laboratory

Containers, continued

l  Examples of container engines: LXC, Docker

l  Containers provide some isolation but it is not as
strong as VM isolation

l  A container is much lighter weight than a VM

l  The number of containers that can be run on a single
physical machine is much greater than the number of
VMs per physical machine

Critical Systems
Laboratory

REST

l  http is the new transport protocol (distributed
applications and services communicate via http)

l  two paradigms for distributed programming via http
(Web services)
–  SOAP (simple object access protocol)
–  REST (representational state transfer)

Critical Systems
Laboratory

Web Services via SOAP and REST

l  SOAP
–  Full distributed object system with IDL (WSDL)
–  Arbitrary method calls
–  Stateful services with stateful interactions
–  Support for advanced features: security, transactions, etc.
–  Tightly coupled distributed applications: core Google apps, enterprise

applications
l  REST

–  REpresentational State Transfer
–  No IDL
–  Simplified stateless interactions (self-describing messages)
–  Only HTTP get, head, put, post, delete methods
–  State maintained on clients and resources, accessible by other services
–  Loosely coupled distributed applications: twitter, flickr, …

Critical Systems
Laboratory

Web Services with SOAP

l  HTTP is simply a transport layer for WS-SOAP
l  SOAP messages are tunneled through HTTP
l  There is one URI, which identifies the service

Critical Systems
Laboratory

Web Services with SOAP (cont.)

l  All messages use HTTP posts and the unique service URI
l  Service maintains state (“order” object maintained by service is created in

one message exchange and operated on in subsequent message
exchanges)

l  WSDL interface description used to generate client stubs

Critical Systems
Laboratory

Web Services with REST

l  HTTP is the application layer for WS-REST
l  REST messages, for a given service, can operate on

multiple resources identified by their respective URIs

Critical Systems
Laboratory

Web Services with REST (cont.)

l  Operations are carried out using different HTTP methods operating on resources
with their own URIs

l  Two resources: “books” and “orders”
l  Server-side state pushed into resources, which can be accessed concurrently by

different services

Critical Systems
Laboratory

Web Services with REST (cont.)

l  Communication is stateless: each client request to the
server must contain all information needed to
understand the request, without referring to any stored
context on the server

l  Application state is pushed to edges: clients and
resources

l  Client state can be maintained using cookies
l  Server-side state pushed into resources, which can be

accessed concurrently by different clients and different
services

Critical Systems
Laboratory

Web Services with REST: Principles

1.  Identify all resources through URIs
2.  Uniform and simple interface: HTTP get, head, put,

post, delete
-  1. and 2. ⇒ “small set of verbs applied to a large set of nouns”

3.  Self-describing messages

4.  Hypermedia driving application state: applications
“navigate” interconnected set of resources

5.  Stateless interactions

Critical Systems
Laboratory

SOAP vs. Rest: State Handling

SOAP: Shopping cart is
state maintained by service,
available only to clients of
that service that know how

to access it

REST: Shopping cart is
resource stored persistently
on server, accessible via its
URI to any client and any

service

Critical Systems
Laboratory

Big Data

l  Data collection too large to transmit economically over Internet ---
Petabyte data collections

l  Computation produces small data output containing a high density
of information

l  Implemented in the cloud
–  data generated in the cloud
–  bring computation to data, too expensive to bring data to computation

(think Google Trends operating on Google search data)
l  Easy to write programs, fast turn around
l  Often processed with MapReduce paradigm

•  Map(k1, v1) -> list (k2, v2)
•  Reduce(k2,list(v2)) -> list(v3)

Critical Systems
Laboratory

What is MapReduce?

l  MapReduce
–  Programming model from LISP
–  (and other functional languages)

l  Many problems can be phrased this way

l  Easy to distribute across nodes
–  Imagine 10,000 machines ready to help you compute anything you could

cast as a MapReduce problem!
•  This is the abstraction Google is famous for authoring

–  It hides LOTS of difficulty of writing parallel code!
–  The system takes care of load balancing, dead machines, etc.

l  Nice retry/failure semantics

Critical Systems
Laboratory

Programming Concept

l  Map
–  Perform a function on individual values in a data set to

create a new list of values
–  Example: square x = x * x

 map square [1,2,3,4,5]
 returns [1,4,9,16,25]

l  Reduce
–  Combine values in a data set to create a new value
–  Example: sum = (each elem in arr, total +=)

 reduce sum [1,2,3,4,5]
 returns 15 (the sum of the elements)

Critical Systems
Laboratory

Input & Output: each a set of key/value pairs
Programmer specifies two functions:

map (in_key, in_value) →  
 list(out_key, intermediate_value)
–  Processes input key/value pair
–  Produces list of intermediate pairs

reduce (out_key, list(intermediate_value)) →  
 list(out_value)
–  Combines all intermediate values for a particular key
–  Produces list of merged output values (often just one)

MapReduce Programming Model

Critical Systems
Laboratory

Word Count Example

l  We have a large file of words, many words in
each line

l  Count the number of times each distinct word
appears in the file(s)

Critical Systems
Laboratory

Word Count using MapReduce

map(key	
 =	
 line,	
 value=contents):	

	
 for	
 each	
 word	
 w	
 in	
 value:	

	
 	
 emit	
 Intermediate(w,	
 1)	

reduce(key,	
 values):	

//	
 key:	
 a	
 word;	
 values:	
 an	
 iterator	
 over	
 counts	

	
 result	
 =	
 0	

	
 for	
 each	
 (key,	
 v)	
 in	
 intermediate	
 values:	

	
 	
 result	
 +=	
 v	

	
 emit(key,result)	

Critical Systems
Laboratory

Word Count, Illustrated

see bob run
see spot throw

see 1
bob 1
run 1
see 1
spot 1
throw 1

bob 1
run 1
see 2
spot 1
throw 1

Critical Systems
Laboratory

MapReduce WordCount Java Code

Critical Systems
Laboratory

l  Program implemented by Google to rank any type of recursive
“documents” using MapReduce.

l  Initially developed at Stanford University by Google founders, Larry Page
and Sergey Brin, in 1995.

l  Led to a functional prototype named Google in 1998.
l  Still provides the basis for all of Google's web search tools.
l  PageRank value for a page u is dependent on the PageRank values for

each page v out of the set Bu (all pages linking to page u), divided by the
number L(v) of links from page v

Google PageRank using MapReduce	

Critical Systems
Laboratory

PageRank: Propagation

l  Calculates outgoing page rank contribution for a page

l  Map: for each object
–  If object is vertex, emit key=URL, value=object
–  If object is edge, emit key=source URL, value=object

l  Reduce: (input is a web page and all the outgoing links)
–  Find the number of edge objectsàoutgoing links
–  Read the PageRank Value from the vertex object
–  Assign PR(edges)=PR(vertex)/num_outgoing

Critical Systems
Laboratory

PageRank: Aggregation

l  Calculates rank of a page based on incoming link
contributions

l  Map: for each object
–  If object is vertex, emit key=URL, value=object
–  If object is edge, emit key=Destination URL, value=object

l  Reduce: (input is a web page and all the incoming links)
–  Add the PR value of all incoming links

–  Assign PR(vertex)=ΣPR(incoming links)
l  Repeatedly execute propagation, aggregation phases until

convergence

Critical Systems
Laboratory

Hadoop Execution

l  How is this distributed?
1.  Partition input key/value pairs into chunks, run map() tasks

in parallel
2.  After all map()s are complete, consolidate all emitted values

for each unique emitted key
3.  Now partition space of output map keys, and run reduce() in

parallel

l  If individual map() or reduce() fails, reexecute!

Critical Systems
Laboratory

Hadoop Execution (cont.)

Critical Systems
Laboratory

Hadoop Execution Coordination

l  Split input file into 64MB sections (GFS)
–  Read in parallel by multiple machines

l  Fork off program onto multiple machines

l  One machine is Master

l  Master assigns idle machines to either Map or Reduce tasks

l  Master coordinates data communication between map and reduce
machines

Critical Systems
Laboratory

Beyond MapReduce – Data Processing Pipelines

l  Google Cloud Dataflow
l  Amazon Data Pipeline
l  MapReduce pipelines data across the following steps:

–  Split
–  Map
–  Shuffle and Sort
–  Reduce

l  General data processing pipeline allows programmer to
define each step however they want and efficiently
pipeline data across the steps

Critical Systems
Laboratory

Beyond MapReduce – TfIdf Pipeline Example

l  TfIdf − term frequency - inverse document frequency;
importance of a term to each document in a corpus

l  TfIdf pipeline steps (after splitting documents):
–  Map each document’s URI to each word in document
–  Map each word to number of documents it appears in (nd)
–  Map each document’s URI to total number of words in document
–  For each (word, URI), count number of occurrences of word in

document with that URI
–  Merge total words and word counts, i.e. create a (wordCount,

totalWordCount) pair for each (word, URI) pair
–  Compute term frequencies (wordCount/totalWordCount)
–  Compute document frequencies (nd/numberOfDocuments)
–  Compute TfIdf = termFreq * (ln 1/docFreq) for each (word, URI)

Critical Systems
Laboratory

noSQL Data Services

l  Most often refers to a “key-value store”
–  Data indexed by a single element, the key
–  All queries are based on the key
–  Good for large amounts of unstructured data

l  Simpler and faster than fully relational database (e.g. SQL)
–  Relational databases are structured as tables
–  A complete row of the table is one record
–  Columns of the table represent different fields of the database
–  Queries can be run against any field or combination of fields
–  Good for moderate amounts of structured data

