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Abstract

Topology Control (TC) is a well-studied technique used in wireless ad hoc networks to find energy-efficient

and/or low-interference subgraphs of the maxpower communication graph. However, existing work has the

following limitations: (1) the energy model adopted is quite unrealistic - only transmit power is often consid-

ered and homogeneous decay of the radio signal with distance is assumed; (2) the interference measure does

not account for multi-hop communications. In this paper, we show the dramatic effect of the underlying en-

ergy and interference model on TC. In particular, we demonstrate that by using more realistic energy models

and considering the effects of multi-hop interference, radically different conclusions about TC can be drawn;

namely that (1) energy efficient TC is essentially meaningless, since every link turns out to be “efficient”, and

that (2) topologies identified as “interference-optimal” in the current literature can be extremely bad from the

viewpoint of multi-hop interference. Given these observations, we propose a new measure of link interference,

extend it to deal with multi-hop interference, and design a corresponding optimal communication subgraph,

called ATASP. We prove that, in the worst case, ATASP coincides with the maxpower communication graph,

showing that in some unfortunate situations also performing multi-hop interference-based TC is pointless.

However, the simulation results with random node deployments presented in this paper show that, on the av-

erage, ATASP is a sparse subgraph of the maxpower communication graph, and multi-hop interference-based

TC is indeed possible. Since computing ATASP requires global knowledge, we experiment through simulation

with known localized algorithms for energy-efficient TC and show that they perform well (on the average)

with respect to multi-hop interference.
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1 Introduction

Topology Control (TC) attempts to find efficient but sparse subgraphs of the maxpower communication graph

(from now on, maxpower graph) in a wireless ad hoc network [1, 2, 10, 13, 15, 17]. The goal of TC is to eliminate

inefficient links that ought not be used for communication. In addition to TC’s inherent benefits, use of a sparse

topology reduces routing overhead, which can be quite high in ad hoc networks due to expensive flooding of route

discovery messages [9].

The efficiency metrics used to date in the TC literature are: (1) energy [1, 10, 15, 17] and (2) interference [2, 13].

The need to reduce energy is fundamental in energy-constrained environments, while reducing interference has

the potential to increase network capacity [6, 7, 8].

However, existing work has made some significant simplifying assumptions. First, when considering energy,

only transmit power is typically considered and it is assumed that power decays as 1
dα , where d is the distance

between sender and receiver and α is the path loss exponent. This is known to be a poor model for energy

consumption of the entire network interface (as we demonstrate in Section 2). Also when the receiver power

is accounted for (as in [15]), the assumption of homogeneous power decay with distance is used, implying that

the transmit power varies from nearly 0 (when the receiver is very close to the sender) to high values (when the

receiver is far away). Actually, as we discuss in Section 2, in real wireless transceivers the ratio between the

minimum and the maximum possible transmit power is limited, and it is often well within a factor 2. As we will

discuss therein, accounting for the actual ratio between the minimum and the maximum possible transmit power

leads to draw radically different conclusions about which links are energy-efficient.

Simplifying assumptions have been made also when considering interference, namely that (1) the transmission

regions are perfectly circular and (2) interference in multi-hop communications is not accounted for.

In this paper, we study the TC problem using more realistic energy and interference models, and we show

that if such models are used, radically different conclusions about TC are drawn.

Concerning energy, we show that, at least with current transceiver technology, no energy-efficient TC is

possible: every link in the maxpower graph is energy-efficient. This statement is first theoretically proved for

the case of three nodes (reversing the well-known triangular inequality argument), and then validated through

simulation for larger network sizes.

We then move to considering TC for interference. We first point at some limitations of the proposed definitions

of (graph) interference and introduce two new metrics, (a) to measure the interference associated to a link in a

way that does not depend on assumptions on the radio coverage area, and (b) to account for interference in multi-

hop communications. We also present distributed protocols for estimating the link interference in a maxpower

graph, first for homogeneous networks and then for networks in which the radio devices are not constrained to use

the same power levels. Using our notion of multi-hop interference, we then show that: (i) MST-based topologies

(proposed as optimal solutions in current literature [2, 13]) are actually Ω(n) away from the optimal solution (n is
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the number of network nodes) if multi-hop interference is accounted for; and (ii) there exist node placements and

transmit power settings such that removing any link from the maxpower graph results in increasing multi-hop

interference.

In light of (ii), one might conclude that no multi-hop interference TC is possible as well. However, (ii) holds

in a worst-case scenario. Is some type of TC possible for non-pathological node placements? To answer this

question, we extend an existing interference metric to account for irregular radio propagation and multi-hop

interference. Based on this metric, we propose a new network topology, called ATASP, which is shown to be

optimal from the point of view of multi-hop interference (i.e., it maintains all the interference-efficient links), and

we investigate the properties of this topology through simulation with random node deployments. The results

of our simulations show that, if we exclude pathological node placements, multi-hop interference-based TC is

actually possible, since most of the links in the maxpower graph can be removed without increasing multi-hop

interference.

Unfortunately, computing ATASP requires global knowledge. While we leave the problem of designing a

localized TC protocol for building a provably multi-hop interference optimal topology open, we show through

simulation that some of the localized protocols proposed for energy-efficient TC actually perform quite well (on

the average) with respect to multi-hop interference.

We believe the main contribution of this paper is to make it clear the dramatic impact of the underlying

energy and interference model used on the conclusions that can be drawn about the network topology. While

it was well known in the community that using “simple” models could lead to “inaccurate” conclusions about

the optimal network topology, no research has thoroughly investigated the relations between radio models and

the resulting optimal network topology. The results presented in this paper clearly demonstrate the importance

of choosing a realistic (although necessarily simplified) radio model when studying fundamental properties of

wireless ad hoc networks.

The rest of this paper is organized as follows. In Section 2, we discuss the implications on TC of using more

realistic energy models. In Section 3, we consider interference-based TC, and in Section 4 we propose a metric to

estimate interference in ad hoc networks. In Section 5, we introduce efficient distributed protocols for computing

this metric, under different assumptions about the features of the underlying ad hoc network. In Section 6,

we show that existing solutions for interference-based TC are very inefficient when multi-hop interference is

accounted for. In Section 7, we present ATASP, a provably optimal topology for multi-hop, interference-based

TC, and we analyze its properties. In Section 8, we evaluate through simulation the performance with respect to

multi-hop interference of existing localized TC protocols, which have been designed for a different optimization

goal (reducing energy consumption). In Section 9, we revisit the wellknown triangular inequality argument in

view of reducing multi-hop interference. Finally, Section 10, we draw some conclusions and point to possible

direction for future work.
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2 TC for energy

In this section, we use the following notation for the power consumption parameters of a network interface:

tmax = transmit power at highest setting; tmin = transmit power at lowest setting; r = receive power.

Consider Figure 1, which shows a typical situation involving three nodes having a triangle relationship.

Figure 1: Example of a Triangle Relationship

In this situation, we are concerned with sending data from node A to node C and we would like to decide

whether it is more energy-efficient to use the direct link connecting the two nodes or to use the multi-hop path

with two links (A,B) and (B,C). We are primarily interested in the question of whether it is ever more energy-

efficient (with realistic network interface parameters) to use the multi-hop path. Accordingly, we consider the

best-case scenario for the multi-hop path, i.e., the situation where links (A,B) and (B,C) use tmin and link

(A,C) uses tmax.

Considering both transmit and receive powers, the total power for the single-hop path is tmax + r and the

total power for the multi-hop path is 2tmin + 2r. Thus, the multi-hop path is preferable if and only if:

tmin <
tmax − r

2
(1)

Much of the existing work assumes tmax � tmin, r. In this situation, Inequality 1 would hold. However, this

assumption accounts only for the power consumed by the power amplifier but not the total power consumed by

the interface.

For current technology, and when total power consumption is considered, triangle inequality is hardly satisfied.

Data from all network interfaces that we have seen show that r, tmin, and tmax are all within a factor of two.

Triangle Inequality (1) clearly does not hold for values in this range. For example, in the Cisco Aironet 4800

card, r = 0.958tmin and tmax = 1.358tmin [4]. For Inequality (1), these values make the left hand side 2.5 times

greater than the right hand side. In the sensor domain, the Medusa II sensor nodes have r = 1.107tmin and

tmax = 1.265tmin [14]. Here, the situation is even less favorable for the multi-hop path in that the left hand side

becomes almost 13 times as large as the right hand side!

These simple analyses have a serious implication on topology control for energy reduction. Because the most

energy-efficient path between two nodes that are the endpoints of a wireless link is the link itself, no link is

unnecessary if minimum-energy paths are to be used at all times and thus, no topology control is possible1.
1Note that this statements holds with current transceiver technology, and it might no longer hold when the technology will allow

to have tmin order of magnitudes lower than tmax.
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These analyses leave open the theoretical possibility that a path connecting two nodes of length k + 1 is

more energy-efficient than a path between the same nodes of length k, for large enough k. However, in the

following simulation results (with the Cisco Aironet 4800 power values), this situation never occurred. The

minimum-energy path between two nodes always corresponded to a minimum-hop path. This implies that, from

a practical standpoint, energy-aware routing corresponds to selecting the minimum-energy path from among all

minimum-hop paths.

The simulations have been performed considering n nodes (n ranges from 10 to 500) deployed uniformly at

random in the unit square. Two radio channel models have been considered: free space propagation (circular

radio coverage, with path loss exponent α = 2), and log-normal shadowing. In the log-normal shadowing model,

the transmitted signal attenuation at a certain distance is determined by the sum of a deterministic and a random

component. This way, the log-normal shadowing model accounts for the situations in which the radio coverage

area is irregular. The deterministic component gives the average value of the received signal, which is determined

by the distance between sender and receiver and by the path loss exponent (set to 2 in our experiments).

The random component has log-normal distribution (normal distribution when measured in dBs) with standard

deviation σ (σ = 6 in our experiments).

Note that the log-normal shadowing model defines a virtual distance between two nodes, which results from

the combination of the deterministic and the random components of the signal attenuation. We can say that two

nodes in the log-normal shadowing model are neighbors if and only if their virtual distance is below the maximum

transmitting range.

The nodes maximum transmitting range in our simulations was set to the value of the critical transmitting

range for connectivity, augmented by 50% (see [16]).

The energy cost of link (u, v) is computed according to the following formula:

EC(u, v) = Er + EtxMin + (EtxMax − EtxMin)

„
dist(u, v)

Tr

«α

,

where dist(u, v) is the distance (in case of log-normal shadowing, the virtual distance) between nodes u and

v, Tr is the maximum transmitting range, Er is the energy consumed in receiving a packet, and EtxMin and

EtxMax are the energy consumed at minimum and maximum transmit power, respectively. The values of Er,

EtxMin and EtxMax are taken from [4].

To evaluate the effect of node concentration on the minimum-energy paths, we have repeated the simulations

using the two-dimensional Normal distribution to deploy nodes. Indeed, we have considered only the nodes which

are deployed in the unit square: that is, to generate a network with n nodes, we distribute nodes according to

the two-dimensional Normal distribution, discarding the node if it falls outside the unit square. In general, we

thus need the generation of n1 > n nodes to build a network with n nodes.

As anticipated above, in all the simulated scenarios, the minimum-energy path between two nodes always

corresponded to a minimum-hop path.
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Figure 2: Coverage measure of the edge e = (u, v).

3 TC for interference

The first paper that explicitly addresses the problem of interference-based topology control is [2]. In this work,

Burkhart et al. define a metric that estimates the possible interference by a communication along the link. They

call this measure coverage, which is formally defined as follows:

Definition 1. Let e = (u, v) be any edge of the maxpower graph G = (N,E), indicating that nodes u, v ∈ N are

within each other’s maximum transmitting range. The coverage of edge e is defined as

Cov(e) = |{w ∈ N : w is inside D(u, δ(u, v))} ∪

{w ∈ N : w is inside D(v, δ(u, v))}| ,

where D(x, y) denotes the disk of radius y centered at node x, and δ(x, y) is the distance between x and y.

The example reported in Figure 2 clarifies the definition of edge coverage.

Based on the notion of link coverage, Burkhart et al. define the interference of a certain maxpower graph

G = (N,E) as the maximum coverage over all possible links. Formally, I(G) = maxe∈E Cov(e).

Given this notion of graph interference, the authors of [2] identify a set of sparse, connected topologies that

minimize interference.

Other interference measures have been proposed in [13]. In particular, Moaveni-Nejad and Li define the

interference of a graph as the average of the link coverage. Formally,

AI(G) =
∑

e∈E Cov(e)
|E|

.

We observe that the notions of graph interference introduced in the literature so far suffer two major problems:

(i) they are based on the notion of link coverage, which is purely geometric; and (ii) they do not account for

interference in multi-hop communications.

Problem (i) implies that the link coverage is an accurate measure of the expected interference only under

particular circumstances, i.e., when the radio coverage area can be modeled as a perfect circle. Unfortunately,

this is not the case in most practical situations, due to shadowing and fading effects.

6



Problem (ii) can be even more serious, since most communications in ad hoc networks are expected to occur

along multi-hop paths. As we shall see, not accounting for multi-hop interference might lead to radically different

conclusions about which is the “interference-optimal” topology.

In the next sections, we propose solutions to address these two problems.

4 The interference number

In this section, we introduce a new link metric for estimating interference, which is a generalization of coverage,

and we propose a metric to measure interference in multi-hop communications.

As observed in the previous section, the definition of coverage is purely geometric, and it relies on the

assumption of perfect circular coverage of the radio signal. That is, this definition relies on a specific radio

channel model, which does not account for shadowing and fading effects. Other notions of interference have been

recently proposed in [12] and in [13], but they are similar to coverage in that they also are purely geometric

definitions and rely on a specific radio channel model.

To circumvent this problem, we generalize the definition of coverage introduced in [2], obtaining a new measure

of the interference associated with a link. The most notable aspect of this definition is that it does not rely on

the strong and often unrealistic assumption that the radio coverage area is a perfect circle. Thus, it can be used

in combination with more general radio channel models, which account for shadowing/fading effects.

Definition 2 (Interference number). Let e = (u, v) be any edge of the maxpower graph G = (N,E), indicating

that nodes u, v ∈ N are within each other’s maximum transmitting range. Let Pu(v) (respectively, Pv(u)) be

the minimum transmit power of node u (respectively, v) needed to sustain the link to node v (respectively, u).

Furthermore, let Nu(v) (resp., Nv(u)) be the set of nodes within u’s (resp., v’s) transmitting range when u

(resp., v) transmits with power Pu(v) (resp., Pv(u)). The interference number of edge e is defined as IN(e) =

|Nu(v) ∪Nv(u)|.

The example reported in Figure 3 clarifies the definition of interference number of an edge. We believe the

notion of interference number as defined in this paper is a reasonable measure of the interference generated by the

communication along a certain wireless link, at least when the MAC layer is based on CSMA-CA (as it is the case

of 802.11). Suppose nodes u and v are the communicating nodes; due to the RTS/CTS message exchange, all the

nodes within u’s and v’s transmitting range (i.e., nodes in Nu(v) and in Nv(u)) must refrain their communications

to avoid interference with the current transmission. So, the number of nodes in Nu(v) ∪ Nv(u) (excluding the

communicating nodes u and v) is a measure of the amount of wireless medium ‘consumed’ by the communication.

Note that our notion of interference number can be easily extended to account for interference ranges which

are larger than the communication range. This is the case, for instance, when the access to the channel is

regulated by a carrier sensing mechanism, given that the carrier sensing range is usually larger than the actual
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Figure 3: Interference number of the edge e = (u, v).

transmitting range. However, to ease the presentation of our results, in the rest of this paper we assume that the

interference range of a node coincides with its transmitting range.

Based on the interference number, we measure interference in a multi-hop communication as follows: given a

certain path p = {u = w0, w1, . . . , wh−1, wh = v} connecting nodes u and v, the cost of communicating from u

to v along p equals the sum of the interference numbers of the links traversed by the path. This defines the path

interference cost of p. Formally:

PIC(p) =
h−1∑
i=0

IN((wi, wi+1)) .

Given the maxpower graph G = (N,E) and a given source/destination pair (u, v) in G, the minimum interference

path between u and v is a path in G with minimum PIC, and it is denoted mipG
u,v.

Based on the PIC, we can use the notion of spanning factor to estimate how good a certain network topology

is at reducing interference:

Definition 3 (PIC spanning factor).

Let G = (N,E) be the maxpower graph, and let G′ = (N,E′) be a subgraph of G. The PIC spanning factor of

G′ is the maximum over all possible source/destination pairs of the ratio of the cost of a minimum interference

path in G′ to the cost of a minimum interference path in G. Formally,

ρ(G′) = max
u,v∈N

PIC(mipG′

u,v)
PIC(mipG

u,v)
.

Conventionally, we define ρ(G′) = ∞ if there exist nodes u, v which are connected in G, but they are disconnected

in G′.

Ideally, we want to identify a sparse subgraph G′ of G with low PIC spanning factor, possibly equal to 1.

If such a subgraph G′ exists, we are ensured that routing messages along G′ does not incur any interference

penalty with respect to routing messages in the original graph. Of course, this is true under the assumption that

interference-aware routing is used in combination with interference-based topology control.

With respect to this last point, we observe that the PIC can be used to implement interference-aware routing in

a straightforward manner, e.g., by using the interference number as the link cost in DSR-like routing protocols [9].
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We want to stress that recent work has shown that interference-aware routing has the potential to considerably

increase network throughput with respect to shortest path routing (see, e.g., [3] and [8]).

The path interference cost as defined here is the first metric proposed in the literature which: (i) can be

easily computed; (ii) does not require any global knowledge (e.g., number of nodes in the network) nor traffic

information; (iii) accounts for multi-hop communications; and (iv) can be used in combination with transmit

power control techniques.

In particular, as already pointed out, the metrics proposed in [2, 13] do not account for the multi-hop nature

of communications in ad hoc networks. As we will show in the Section 6, not accounting for multihop interference

leads to drawing radically different conclusions on which topologies are good for reducing interference.

Other interference metrics have been introduced in the literature. However, they either require knowledge

of the traffic flows [12], or they rely on global information such as node positions, density, and expected traffic

[7], or they are based on a centralized approach to the problem of reducing multi-hop interference [8]. In the

context of routing, the metric that shares most properties with the path interference cost defined here is the

expected transmission count metric (ETX) proposed in [3]. ETX estimates the number of transmissions required

to successfully deliver a packet over a link, and it is used to find paths that minimize the expected total number

of packet transmissions required to successfully deliver a packet to the final destination. Similarly to the PIC

metric, ETX can be easily computed relying only on local information (link loss estimate), it does not require

global information, and it accounts for multi-hop communications. Furthermore, since the number of expected

transmissions is clearly related to the expected interference level in the network, ETX-based routing is likely to

select low-interference paths. However, ETX relies on the assumption that all the nodes use a fixed transmit

power level, and, consequently, it cannot be used in combination with topology control techniques.

5 The InterfEst protocol

In this section we present distributed protocols for estimating the interference number of the edges in the max-

power graph. In particular, at the end of the protocol execution each node in the network knows the interference

number of all the edges incident into it. Note that we are interested only in bi-directional links. In other words, we

want to estimate the interference number of all the edges (u, v) such that u and v are within each other maximum

transmitting range. Our interest in bi-directional links is motivated by the fact that managing unidirectional

links incurs a high overhead in ad hoc networks [11].

In the protocol description, we assume that each node can transmit using a finite number of different transmit

power levels P1, . . . , Pmax, which is the case for commercial wireless cards and sensors. Note that we do not assume

that all the nodes use the same power levels, nor that they have the same maximum transmit power. Thus, our

protocol can be applied in networks composed by different types of devices, as is the case in many ad hoc network
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application scenarios. Furthermore, we do not assume that the wireless medium is symmetric2.

If all the nodes use the same power levels, and under the assumption of symmetric wireless medium, the

protocol definition is considerably simplified. For this reason, we first introduce this simplified version of the

protocol, which we call HInterfEst, where H stands for homogeneous networks. Note that wireless sensor

networks are typically homogeneous networks.

Protocol HInterfEst:
(protocol for node u)

N i
u denotes the set of incoming neighbors of node u at power level Pi;

0. Initialization
for i=1 to max do N i

u = ∅
1a. Send beacons

for i=1 to max
send beacon (u, Pi) at power level Pi

1b. Receive beacon
upon receiving beacon message (v, Pj)

if this is the first beacon message received from v
N j

u = N j
u ∪ {v}

2. Wait for the stabilization period
3a. Send neighbor lists

send message (u, N1
u , . . . , Nmax

u ) at power level Pmax

3b. Receive neighbor lists
upon receiving message (v,N1

v , . . . , Nmax
v )

store the neighbor lists of node v
4. Wait for the stabilization period
5. Compute interference numbers

for i = 1 to max
for each v ∈ N i

u do
IN(e = (u, v)) = |

⋃i
h=1

(
Nh

u ∪Nh
v

)
|

Figure 4: Protocol for estimating the interference number in homogeneous networks.

5.1 Homogeneous networks

Protocol HInterfEst relies on the following assumptions:

a1. all the nodes can transmit using a finite number of power levels P1, . . . , Pmax; the power levels (and, in

particular, the maximum transmit power) are the same for all the nodes in the network;

a2. the wireless medium is symmetric.

The protocol is very simple. Initially, every node in the network sends a beacon message at every power level,

starting from the lowest level. The beacon contains the node ID and the power level used to send the message.
2The wireless medium is symmetric if the fact that node u can reach node v using a certain power Pi implies that also node v

can reach node u using power Pi.
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When a certain node u receives a beacon message (v, Pi) from a neighboring node, it checks whether this is the

first beacon received from v. If yes, node v is inserted in the set of u’s incoming neighbors at level i. Otherwise the

message is ignored. After a certain stabilization time, needed to receive all possible beacons from the neighbors,

node u transmits at maximum power a message that contains its incoming neighbor lists (one for each power

level). This information is essential for the nodes in u’s neighborhood to compute the interference number of

their links to node u. At the same time, node u receives the same type of information from all the incoming

neighbors, so that it can compute the interference number of its incident edges. A more formal description of

the protocol is reported in Figure 4.

Theorem 1. Protocol HInterfEst is correct, i.e. after its execution every node in the network knows the

interference number of every edge incident into it.

Proof. The correctness of the protocol relies on the following observations, which are a consequence of assumptions

a1. and a2.: when node u receives a beacon message from node v for the first time, the power level used to send

that message represents the minimum power needed to sustain the link e = (u, v). Also, due to assumptions a1.

and a2., the following holds: v ∈ N i
u implies u ∈ N i

v. So, for each power level Pi the nodes in
⋃i

h=1 Nh
u are all

the nodes within u’s range when it transmits with power Pi. Combining these observations, we have that the

interference number of link e = (u, v) is given by the union of all the neighbor lists of nodes u and v up to level

i, where Pi is the minimum power needed to sustain link e.

To end the proof of the theorem, we need to show that, after HInterfEst execution, u knows the interference

number of all the edges incident into it. This follows immediately by observing that, by assumptions a1. and

a2., every node within u’s maximum transmitting range is included in at least one of the N i
u lists.

Theorem 2. Protocol HInterfEst has O(n(max + 1)) message complexity (where n is the number of nodes in

the network).

Proof. The proof is immediate, since every node in the network sends one beacon for each power level (max

messages overall), plus the final message containing its neighbor lists.

Theorem 3. Let G = (N,E) be the maxpower graph, and assume ∆ is the maximum node degree in G. Then,

HInterfEst is at most a factor O(∆max) away from the message optimal distributed protocol P for computing

the interference number of all the links in G. This is true under the assumption that P cannot rely on a specific

radio channel model to estimate the power needed to sustain a link and that G is connected.

Proof. Let u and v be any two nodes that are adjacent in the maxpower graph. We consider two almost identical

scenarios, in which the only difference is the presence or absence of, e.g., an artificial obstacle between u and v.

When the obstacle is removed, the link (u, v) can be sustained at power Pi, otherwise power Pi+1 is required.

Suppose the obstacle is removed; we claim that, according to the optimal protocol P, at least one among u and v

will eventually send a message at power Pi during the protocol execution. Suppose, for the sake of contradiction,
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that none of them sends such a message. Then one of the following will occur: (1) u will not hear any message

from v and vice-versa, since both nodes only send messages at lower power than Pi, if any; (2) u (or v) will

receive a message from v (resp., u) at power at least Pi+1. In both cases, it is impossible for u and v to tell the

correct power level needed to substain (u, v), because messages at power p < Pi or p ≥ Pi+1 cannot discriminate

between the two proposed scenarios.

From the argument above, we can then conclude (without any reference to the power levels) that, for any

edge in G, at least one of its endpoints will send a message during the execution of the optimal protocol P. Now,

since G is connected, the edge set E contains at least n − 1 elements. Thus, the bound ∆ on the node degree

allows us to conclude that there are at least (n− 1)/∆ vertex disjoint edges in G (analogously, we can say that

there is a matching of size at least (n− 1)/∆ in G) and this implies that at least O(n/∆) messages will circulate

under P. In turn, this means that the message complexity of our HInterfEst protocol is within O(∆max)

from optimal.

As an additional remark, we note that, unless (u, v) can be sustained at minimum power, at least two messages

are needed to detect the actual power Pi required (i.e., one at power Pi−1 and one at power Pi). Thus, unless

the majority of nodes can be sustained at minimum power, we obtain a slightly better constant term in the

approximation factor even for worst-case graphs.

In words, Theorem 3 states that our algorithm exchanges at most a factor of O(∆max) more messages than

the minimum required to compute the interference number of all the links in the graph. Although ∆ can be as

high as n− 1 in worst-case scenarios, it is known that ∆ ∈ O(log n) in most situations [5, 16]. So, our algorithm

provides a good approximation of the message optimal solution in most practical cases.

5.2 Heterogeneous networks

We now consider the more complex case of networks composed by heterogeneous devices, i.e., we drop assumption

a1. We also drop the assumption of symmetric wireless medium. For the sake of presentation only, we assume

that all the nodes have the same number of power levels, which we denote P1, . . . , Pmax. We remark that, contrary

to case of homogeneous networks, power level Pi of node u can be different from the same level Pi of another

node v. So, Pi here denotes the i-th power level of the nodes, rather than the actual power used to transmit a

message.

The protocol InterfEst for heterogeneous networks is more complex than HInterfEst, since in this case

v ∈ N i
u does not imply that u ∈ N i

v. Also, the power level needed for node u to sustain the link to node v might

be different from the level needed by node v. In order to circumvent these problems, each node now maintains

two sets of neighbor lists: the lists of its incoming neighbors (one list for each level), denoted N IN,i
u , and the lists

of its outgoing neighbors (one list for each level), denoted NOUT,i
u . The first set of lists is built as long as the

beacons sent by neighboring nodes are received, as in the HInterfEst protocol. Once the incoming neighbor
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lists are built, they are included in the incoming neighbor lists message (u, N IN,1
u , . . . , N IN,max

u ), which is sent at

maximum power. When receiving the incoming neighbor lists messages from the neighbors, a node builds the set

of outgoing neighbor lists. Once the outgoing neighbor lists are built, they are included in the outgoing neighbor

lists message (u, NOUT,1
u , . . . , NOUT,max

u ), which is again sent at maximum power. After a node has received the

incoming and outgoing lists of all its neighbors, it has all the information needed to compute the interference

number of all the edges incident into it. A more formal description of the protocol is reported in Figure 5.

Protocol InterEst is proven to correctly compute the interference number of every link in the graph under

the assumption that the following property holds:

Definition 4 (Max power symmetric property). Let G = (N,E) be the maxpower graph. The max power

symmetric property is satisfied whenever for any node u ∈ N , the fact that v is within u’s transmitting range at

maximum power implies that u is also within v’s range at maximum power.

Note that the max power symmetric property is weaker than the assumption that all the nodes have the same

maximum power and the wireless medium is symmetric. For instance, it might be the case that u’s maximum

power is 50 mW, v’s maximum power is 100 mW, and the wireless medium is not symmetric (e.g. because v

cannot reach u at power 50 mW, while the reverse holds), yet the max power symmetric property is satisfied.

Theorem 4. If the max power symmetric property is satisfied, then protocol InterfEst is correct, i.e. after its

execution every node in the network knows the interference number of every edge incident into it.

Proof. In order to compute the interference number of edge e = (u, v), we have to compute the set of nodes

within u’s range when u transmits with the minimum power needed to reach node v, and the same set of nodes

relative to v. The minimum power needed by v to reach u is power Pi, where i is such that v ∈ N IN,i
u . Given

the max power symmetric property, and the fact that nodes send the incoming neighbor lists at maximum power

(step 3a. of the protocol), node v can correctly compute its sets of outgoing neighbors (step 3b. of the protocol).

This information is sent to node u at step 5a. Again, the circumstance that node u correctly receives the outgoing

neighbor lists of node v is implied by the max power symmetric property, and by the fact that node v sends the

message containing its outgoing neighbor lists at maximum power.

So, at step 6 node u can compute the set of nodes within v’s range at power level Pi as Nv =
⋃i

h=1 NOUT,h
v . In

order to determine the minimum power level Pj needed by u to reach node v, node u inspects its set of outgoing

neighbor lists, computed at step 3b. Note that, since v is within u’s maximum range (otherwise, v would have

been removed from the set of incoming neighbors at step 3b.), there exists j such that v ∈ NOUT,j
u . It follows that

all the nodes in Nu =
⋃j

h=1 NOUT,h
u are within u’s range at power Pj , and must be included in the interference

count. So, the interference number is correctly computed at step 6. of the protocol as |Nv ∪Nu|.

To end the proof of the theorem, we need to show that, after InterfEst execution, u knows the interference

number of all the edges incident into it. We recall that we are interested in estimating the interference of bi-

directional links only. Let us then consider any bi-directional link e = (u, v). Since the link is bi-directional, u
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Protocol InterfEst:
(protocol for node u)

N IN,i
u denotes the set of incoming neighbors of node u at power level Pi;

NOUT,i
u denotes the set of outgoing neighbors of node u at power level Pi;

0. Initialization
for i=1 to max do

N IN,i
u = ∅

NOUT,i
u = ∅

1a. Send beacons
for i=1 to max

send beacon (u, Pi) at power level Pi

1b. Receive beacon
upon receiving beacon message (v, Pj)

if first beacon message received from v
N IN,j

u = N IN,j
u ∪ {v}

2. Wait for the stabilization period
3a. Send incoming neighbor lists

send message (u, N IN,1
u , . . . , N IN,max

u )
at power level Pmax

3b. Receive incoming neighbor lists
upon receiving message (v,N IN,1

v , . . . , N IN,max
v )

store the incoming neighbor lists of node v
find i such that u ∈ N IN,i

v

if no such i exists then
delete v from the incoming neighbor lists (v is out of u’s maximum range)

otherwise
NOUT,i

u = NOUT,i
u ∪ {v}

4. Wait for the stabilization period
5a. Send outgoing neighbor lists

send message (u, NOUT,1
u , . . . , NOUT,max

u ) at power level Pmax

5b. Receive outgoing neighbor lists
upon receiving message (v,NOUT,1

v , . . . , NOUT,max
v )

store the outgoing neighbor lists of node v
6. Compute interference numbers

for i = 1 to max
for each v ∈ N IN,i

u do
Nv =

⋃i
h=1 NOUT,h

v

find j such that v ∈ NOUT,j
u

Nu =
⋃j

h=1 NOUT,h
u

IN(e = (u, v)) = |Nv ∪Nu|

Figure 5: Protocol for estimating the interference number in heterogeneous networks.

is within v’s maximum range, and vice versa. It follows that there exists i such that v ∈ N IN,i
u . Furthermore,

since v is within u’s maximum range, there exists j such that u ∈ N IN,j
v . In turn, this implies that v ∈ NOUT,j

u .

It follows that the interference number of edge e can be correctly computed by both node u and node v.

Note that the max power symmetric property is essential for the correct computation of the interference
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number. In fact, consider the case where u is reachable from v at v’s maximum power, but v cannot be reached by

node u at u’s maximum power. When v calculates the interference number of the edges on which it communicates

at maximum power, it should include u in the count, since v’s transmission at maximum power would interfere

with node u. However, v will never receive any protocol message from u (because it is out of u’s maximum

transmitting range), so it has no way of knowing that node u exists and it cannot possibly include u in the

interference count.

In case the max power symmetric property does not hold, it can be easily seen that the InterEst protocol

computes a lower bound to the interference number of the links.

Proposition 1. If the max power symmetric property does not hold, then protocol InterfEst computes a lower

bound to the interference number of all the bi-directional links in the maxpower graph.

Note that even in case the max power symmetric property does not hold, InterEst is likely to compute the

exact value of the interference number on most network links. In fact, the possible inaccuracy in interference

number computation applies only to those links (u, v) such that: (i) there exists a third node w in v’s range at

power Pi (which is the minimum power needed to sustain link (u, v)), (ii) v is out of w’s transmitting range at

maximum power. A consequence of this observation is that the inaccuracy is likely to occur on links which have

a relatively high interference number, which will probably be discarded by, say, an interference-aware routing

protocol even in case of an incorrect (lower) computation of the interference number. Summing up, we can

conclude that InterEst can be used to accurately estimate the expected interference on a link also in networks

that do not satisfy the max power symmetric property.

Theorem 5. Protocol InterfEst has O(n(max + 2)) message complexity, which is at most a factor O(∆max)

away from optimal, where ∆ is the maximum node degree in the maxpower graph.

Proof. The proof is along the same guidelines as the proof of Theorems 2 and 3.

5.3 Implementation issues

The correctness of the protocols introduced in this section is based on the assumption that all messages (beacon

and neighbor list messages) sent by neighbors are correctly received by any node within a certain finite time

period, which we called stabilization period. An important issue to address when implementing our protocols is

then how to set the stabilization period. However, prior to this, we want to remark that a single execution of

our protocols should be better intended as a stage of an “interference estimation” protocol, which is executed

periodically in order to account for changes in the network topology and/or in the wireless links conditions.

Hence, HInterfEst and InterfEst must be considered as protocols for estimating (and not exactly computing

once and for all) the interference number on the links. In this respect, it is possible to tolerate the loss or late

arrival (after the stabilization period is expired) of some messages, which can be sent again and received (in case

of lost messages) or accounted for (in case of late arrival) during the next execution of the protocol.
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Having established the above, the stabilization period can be estimated based on a knowledge of the maximum

number of one-hop neigbhors (at maximum power) of the network nodes. In turn, the maximum number ∆ of

neighbors can be upper bounded by knowing the node maximum transmit range and the average node density,

which are typically known, at least with a certain degree of approximation, to the network designer. Once an

upper bound on ∆ is known, the stabilization period can be determined by estimating the time required by the

MAC layer protocol at hand to serialize ∆ transmissions across the wireless channel.

6 TC for multi-hop interference

As discussed above, the notion of interference used in the current TC literature does not account for interference

in multi-hop communications. A consequence of this fact is that MST-like topologies (as they are computed

by the LIFE algorithm introduced in [2], and by the various algorithms introduced in [13]) are claimed to be

optimal for reducing interference. The following theorem shows that this claim is false if the multi-hop nature of

communications in ad hoc networks is accounted for.

Theorem 6. Assume the nodes have a circular radio coverage area (in this case, interference number and

coverage are equivalent notions). Let G = (N,E) be the maxpower graph, and assume G is connected. Let

MST = (N,EMST ) be a MST built on G using the interference number as the edge weight. The PIC spanning

factor of the MST is Ω(n), where n = |N |.

Proof. Consider the node placement reported in Figure 6. Assume the nodes’ maximum transmitting range is d.

Nodes u and v are at distance d from each other. The remaining n − 2 nodes form a chain, where consecutive

nodes in the chain are at distance d′ < d from each other. Furthermore, we have the property that any two

non consecutive nodes in the chain are at distance greater than d. The endpoints of the chain are nodes w1 and

wn−2, where w1 is at distance d′ from u and at distance > d from v, and wn−2 is at distance d′ from v and at

distance > d from u. Furthermore, there is a third node, w2, which is at distance d′′ from u, with d′ < d′′ < d,

and at distance > d from v. All the other nodes in the chain are out of u’s and v’s maximum transmitting range.

The resulting maxpower graph is reported in Figure 6; in the figure, edges are labeled both with their length and

with the interference number.

With this node configuration, G is a connected graph composed of n + 1 edges: edges (u, v) and (u, w2) have

interference number equal to 5, edges (u, w1) and (v, wn−2) have interference number equal to 3, and the remaining

edges have interference number equal to 4. When computing the MST , all the edges of weight < 5 are considered

before edges (u, v) and (u, w2) are taken into account. Since the subgraph of G obtained by considering all the

edges with weight 3 and 4 is connected, it follows that links (u, v) and (u, w2) are not included in the MST. The

MST resulting from this node configuration is represented by bold edges in Figure 6. The minimum interference

path connecting u and v in the MST has cost 2 · 3 + 4 · (n − 3); on the other hand, the minimum interference
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Figure 6: Example showing that the interference-based MST has Ω(n) PIC spanning factor.

path between u and v in G is edge (u, v), whose cost equals 5. Thus, we can conclude that the PIC spanning

factor of the interference-based MST is Ω(n), and the theorem is proven.

The authors of [2] introduced other low-interference topologies which, besides preserving connectivity, are

good spanners. However, they consider Euclidean spanners, which in general are not good at reducing multi-hop

interference.

7 The ATASP topology

In the previous section we have proved that MST-like topologies are not appropriate for reducing multi-hop

interference. What is then a good topology for this purpose? The following analysis answers this question.

Definition 5 (ATASP topology). Let G = (N,E) be the maxpower graph. The (interference) ATASP subgraph

of G is the graph with node set N and edge set EATA, where edge (u, v) ∈ EATA if and only if there exists a

source/destination pair w, z in N such that edge (u, v) belongs to a minimum interference path connecting w and

z in G.

The intuition behind the notion of ATASP (All-To-All-Shortest-Path) graph is the following: in principle, an

edge e can be declared “inefficient”, and thus removed from the final network topology G′, only if it is not part

of any interference-optimal path in the graph. Otherwise, removing e from the network topology might increase

the PIC of some optimal source/destination path, possibly leading to an increase of the PIC spanning factor of

G′.

Note that the increase in the PIC spanning factor does not necessarily occur: in fact, it might be the case

that there exist multiple minimum interference paths connecting two nodes, and removing an edge along one of

these paths does not increase the PIC spanning factor. However, with the definition of ATASP graph introduced
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above, we are ensured that in every possible node placement ATASP has optimal PIC spanning factor. This is

stated in the following theorem.

Theorem 7. Let G be the maxpower graph, and let ATASP be the graph constructed as in the definition above.

ATASP has optimal PIC spanning factor, i.e., ρ(ATASP ) = 1.

Proof. The proof follows immediately by the definition of ATASP graph.

The fact that ATASP has optimal PIC spanning factor implies that it preserves worst-case connectivity:

Theorem 8. Let G be the maxpower graph, and let ATASP be the graph constructed as in the definition above.

Then ATASP is connected iff G is connected.

Although the ATASP topology has the nice features of being an optimal PIC spanner and of preserving

network connectivity, the question of whether ATASP is actually a sparse subgraph of G remains open. The

following theorem gives a negative answer to this question.

Theorem 9. There exist a node configuration and maximum transmit power setting such that the maxpower

graph G is composed of Θ(n2) edges, and its ATASP subgraph is composed of Θ(n2) edges as well.

Proof. Consider a placement of n equally spaced nodes on a circle, numbered consecutively 0 through n − 1.

Suppose also that the maximum transmitting range of a node is not less than the diameter of the circle, so that

the maxpower graph G = (N,E) is the complete graph. We prove that, for any u, v ∈ N , the arc (u, v) must be

in the ATASP topology, i.e., EATA = Θ(n2).

By a trivial symmetry argument, the cost of the optimum interference path between any two nodes only

depends on their distance k, measured as the minimum number of nodes between them (moving either clockwise

or counterclockwise). Thus, we may assume, w.l.o.g, that u = 0 and v = k, with 0 < k ≤ n−1
2 . A link between

nodes i < j is a chord of length c if j − i = c. It is easy to see that IN((i, j)) = min{n, 3(j − i) + 1}. In

fact, a transmission along the chord (i, j) will interfere with the c nodes “preceding” the sender i, the c nodes

“following” the receiver j, and the c − 1 nodes in-between; counting also sender and receiver and summing up

gives interference 3c + 1. See Figure 7.

Now, in looking for a minimum interference path between 0 and k, we can limit our search to monotonic

paths, i.e., paths such that, for any intermediate transmission s → r (if any), r > s holds true. This fact can be

easily proven by induction on the value of k. But then, any optimum interference path p between 0 and k must

satisfy the equation
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Figure 7: Placement of nodes for Theorem 9. In this example, k = v − u = 6.

PIC(p) = min
0≤h<k

0<i1<...<ih<k

PIC(0, i1, . . . , ih, k)

= min
0≤h<k

0<i1<...<ih<k

h∑
j=0

IN((ij , ij+1))

= min
0≤h<k

0<i1<...<ih<k

h∑
j=0

(3(ij+1 − ij) + 1)

where we have set i0 = 0 and ih+1 = k. The terms in the last summation telescope, giving PIC(p) = 3k + h + 1

which is minimized for h = 0, i.e., when p coincides with the link (0, k). Since k is arbitrary, this means that any

chord of length k must indeed be present in EATA.

Indeed, the very same node placement adopted in the proof of Theorem 9 can be used to prove the following

stronger negative result about multi-hop interference-based TC:

Corollary 1. There exist a node placement and maximum transmit power setting such that no link can be

removed from the maxpower communication graph without increasing multi-hop interference.

In words, Corollary 1 states that there exist situations in which performing multi-hop interference-based TC

is useless, since all the links in the maxpower graph turn out to be interference-efficient.

Is then performing multi-hop interference-based TC pointless, as it is the case of energy-based TC? To answer

this question, we first observe that Theorem 9 and Corollary 1 refer to a worst-case scenario, which is quite

unlikely to occur in practical situations. To gain insights on the ATASP sparseness in average-case situations, we

have estimated the average node degree in ATASP through extensive simulations on randomly deployed networks.

To generate the maxpower graph G, a number n of nodes is distributed uniformly at random in the unit square,

and the maxpower graph is computed according to a certain radio channel model. Similarly to the simulations

for energy, we have considered values of n ranging from 10 to 500 nodes, and two radio channel models: the quite

idealistic free space propagation model, and the log-normal shadowing model.
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Figure 8: Sample of ATASP graph. The radio channel model is free space.
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Figure 9: Average node degree of the ATASP graph for increasing network size with free space propagation, and

with log-normal shadowing (σ = 6). Node distribution is uniform.

Once the maxpower graph has been generated, we assign weights to the links according to the interference

number, and we compute the optimal all-to-all shortest paths. Every edge which is part of at least one such

paths is marked as belonging to ATASP. At the end of this process, the ATASP topology is computed, and the

average node degree recorded. A sample of ATASP topology is reported in Figure 8.

The results of our simulations are reported in Figure 9. As seen from the figure, the average degree with

log-normal shadowing is slightly higher than the degree with free space propagation. However, in both cases the

average degree remains confined below 8.5, even for large networks.

To evaluate the effect of node concentration on the average ATASP node degree, we have repeated the

simulations using the two-dimensional Normal distribution to deploy nodes. The simulation results, which are

reported in Figure 10, show that the effect of node concentration on the ATASP node degree is marginal.

Overall, simulation results show that, while ATASP is a dense graph (actually, it can coincide with the
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Figure 10: Average node degree of the ATASP graph for increasing network size with free space propagation,

and with log-normal shadowing (σ = 6). Node distribution is Normal.
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Figure 11: PIC spanning factor (left) of different localized topologies with free space propagation. The graphic

on the right show the average PIC ratio. Node distribution is uniform.

maxpower communication graph) in the worst case, it is a sparse subgraph of the maxpower graph on the

average, indicating that, if we exclude pathological node placements, multi-hop interference-based TC is actually

possible.

8 Localized low-interference topologies

In the previous section we have identified ATASP as the interference-optimal topology, under the assumption

that multi-hop interference is considered. Unfortunately, building the ATASP graph requires global knowledge,

thus impairing one of the desired features of topology control protocols, i.e., locality.

While we leave the problem of designing a localized TC protocol for building a provably multi-hop interference

optimal topology open, in this section we investigate through simulation how do existing localized topologies,

which have been proposed in the literature with the purpose of reducing energy consumption (based on a quite
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Figure 12: PIC spanning factor (left) of different localized topologies with log-normal shadowing. The graphic

on the right show the average PIC ratio. Node distribution is uniform.

unrealistic energy model – see Section 2), perform with respect to multi-hop interference.

The simulation setting is the same as in experiments reported in the previous sections: n nodes randomly

distributed in the unit square (uniform or normal distribution), values of n ranging from 10 to 500, and free

space or log-normal shadowing radio channel model.

We have then considered four different topologies built on the maxpower graph: the Relative Neighbor Graph,

the Gabriel Graph, the CBTC graph [17], and the KNeigh graph [1]. For each of these graphs, we have computed

the PIC spanning factor with respect to the original maxpower graph.

Note that, in case of log-normal shadowing propagation, we have partially modified the definitions of RNG,

GG, CBTC and KNeigh graph: instead of considering the actual node distances to compute the graphs, we have

considered the “virtual” distance obtained by accounting for the shadowing effect (see Section 2). For instance,

in the KNeigh protocol, instead of connecting each node to its k closest neighbors, we have connected each node

to the k neighbors which can be reached with the less power, independently of the actual distance to these nodes.

From a worst-case perspective, this modification might cause these graphs to loose their connectivity property

(we recall that RNG, GG and CBTC preserve worst-case connectivity, while KNeigh preserves connectivity with

high probability). However, our simulations show that this unfortunate situation is very likely not to occur.

The results of our simulations are shown in Figure 11 for the case of free space propagation, and in Figure 12

for the case of log-normal shadowing with uniform node distribution. Besides computing the PIC spanning factor,

we have also computed the average ratio of the cost of the interference optimal path in the topology at hand to

the cost of the optimal path in G (we recall that the PIC spanning factor is the maximum of these ratios). This

value, which we call the average PIC ratio, gives an idea of the average interference penalty caused by using a

certain subgraph of G to route messages.

As seen from the figures, the PIC spanning factor of all the topologies considered remains confined below

4 in case of free space propagation, while it remains below 3.5 with log-normal shadowing. The topology that

shows the best performance is the GG, with a PIC spanning factor below 2.5 with both free space propagation
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Figure 13: PIC spanning factor (left) of different localized topologies with free space propagation. The graphic

on the right show the average PIC ratio. Node distribution is Normal.
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Figure 14: PIC spanning factor (left) of different localized topologies with log-normal shadowing. The graphic

on the right show the average PIC ratio. Node distribution is Normal.

and log-normal shadowing. When considering the average PIC ratio, the situation is even better: the average

interference penalty of the topologies considered is below 1.2 for moderate to large size networks with free space

propagation, and it is below 1.1 with log-normal shadowing. The GG is the best performing topology also with

respect to this metric.

The simulation results obtained with Normally distributed points, which are reported in Figures 13 and 14,

show that the effect of node concentration on the PIC spanning factor and on the average PIC ratio of the

different topologies is scarcely significant.

9 The triangular inequality and interference

In the previous section, we have shown that localized topologies that have been introduced in the literature with

the purpose of reducing energy consumption (under an unrealistic energy model – see Section 2) turn out to
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perform well with respect to multi-hop interference. Among these topologies, the GG is the one that displays

best performance.

In this section, we argue that this fact happens by no chance, but it is a consequence of the triangular

inequality argument, which, although not valid as far as energy is concerned, turns out to hold (under certain

assumptions) for multi-hop interference.

Assume that the radio coverage area is a perfect circle, and that nodes are randomly, densely distributed. In

particular, we model the distribution of nodes in (2-dimensional) space according to the Poisson process with

given density parameter λ. In this scenario, let N(S) denote the number of nodes in the surface S, and let µ(S)

denote the measure (i.e., area) of S; then

Prob(N(S) = k) = e−λµ(S) (λµ(S))k

k!
. (2)

Also, if S1 and S2 are disjoint surfaces, the variables N(S1) and N(S2) are independent.

Theorem 10. Let u and v be two adjacent nodes in the communication graph and let IN((u, v)) denote the

interference number of the edge (u, v). Let the nodes of the wireless network be distributed according to the

Poisson process in space with density λ. Then

P(IN((u, v)) = k) = e−λµ(Suv) (λµ(Suv))k

k!
,

where Suv is the surface depicted in Figure 2.

Proof. (Sketch) The result is quite intuitive. Given a distribution of nodes, we pick the edge (u, v) whose

interference we want to compute. The probability that the region Suv contains k nodes “should be” the same as

the probability that Suv\({u} ∪ {v}) contains k nodes, since the set {u} ∪ {v} has measure 0.

The actual value of µ(Suv) can be easily computed as twice the area of the circle of radius ruv = dist(u, v)

minus the area Cuv of the intersection of two such circles whose centers are at distance ruv (see Figure 2). Because

of the symmetry, the latter can be computed as follows:

Cuv = 4 ·
∫ √

3
2 ruv

0

(√
r2
uv − x2 − 1

2
ruv

)
dx =

=

(
2
3
π −

√
3

2

)
r2
uv .

Twice the area of the circle minus the above value gives then

µ(Suv) = 2πr2
uv − Cuv =

(
4
3
π +

√
3

2

)
r2
uv = γr2

uv ,

where γ ≈ 5.0548.

Given two adjacent nodes u and v, it is not easy to compute the probability of the following event: the

interference over (u, v) is smaller (larger) than the sum of the interferences over the edges (u, w) and (w, v),
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where w is a third node adjacent to both u and v. In fact, the events “number of nodes in Sxy” (where

x, y ∈ {u, v, w} and x 6= y) are highly dependent.

On the side of expectations, though, the computation is straightforward. In fact, we have

E[Nuw + Nwv] = E[Nuw] + E[Nwv] =

λµ(Suw) + λµ(Swv) = λγ(r2
uw + r2

wv)

Analogously, E[Nuv] = λγr2
uv, and thus E[Nuw + Nwv] ≤ E[Nuv] if and only if r2

uw + r2
wv ≤ r2

uv. This amounts to

saying that w must not lay within the circle having the edge (u, v) as the diameter. This corresponds exactly to

the definition of Gabriel Graph.

10 Conclusions

In this paper we have demonstrated the importance of accurately choosing the energy and interference model

when studying the topology control problem in wireless ad hoc networks. While we do not promote ours as the

best possible energy and multi-hop interference models for ad hoc networks, we believe that they capture the

features of this type of networks better than the models used in the literature so far. As a consequence, we

believe the conclusions about TC presented in this paper are closer to reality than the ones presented in previous

work. We are currently working on setting up an experimental testbed for some of the TC techniques considered

in this paper, in order to experimentally validate our findings. This testbed could also be used to demonstrate

the capability of topology control to increase network throughput in a realistic setting.

While this and other recent papers represent progress on the topic of minimizing interference in ad hoc net-

works, much work remains to be done on this topic. There are also many interesting open questions surrounding

the interplay between interference, energy, delay, and throughput.
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