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Abstract 
 
We consider the following problem for wireless ad hoc 

networks: assume n nodes, each capable of communicating 
with nodes within a radius of r, are distributed in a d-
dimensional region of side l; how large must the tran-
smitting range r be to ensure that the resulting network is 
connected? We also consider the mobile version of the 
problem, in which nodes are allowed to move during a 
time interval and the value of r ensuring connectedness for 
a given fraction of the interval must be determined. For the 
stationary case, we give tight bounds on the relative 
magnitude of r, n and l yielding a connected graph with 
high probability in 1-dimensional networks, thus solving 
an open problem. The mobile version of the problem when 
d=2 is investigated through extensive simulations, which 
give insight on how mobility affect connectivity and reveal 
a useful trade-off between communication capability and 
energy consumption. 

 
 

1 Introduction 
 
Wireless ad hoc networks are networks where multiple 

nodes, each possessing a wireless transceiver, form a 
network amongst themselves via peer-to-peer com-
munication. An ad hoc network can be used to exchange 
information between the nodes and to allow nodes to 
communicate with remote sites that they otherwise would 
not have the capability to reach. Wireless ad hoc networks 
are sometimes referred to as wireless multi-hop networks 
because, as opposed to wireless LAN environments, 
messages typically require multiple hops before reaching a 
gateway into the wired network infrastructure.   

Sensor networks [8] are a particular class of wireless ad 
hoc networks in which there are many nodes, each 
containing application-specific sensors, a wireless 
transceiver, and a simple processor. Potential applications 
of sensor networks abound, e.g. monitoring of ocean 

temperature to enable more accurate weather prediction, 
detection of forest fires occurring in remote areas, and 
rapid propagation of traffic information from vehicle to 
vehicle, just to name a few. While the results in this paper 
apply to wireless ad hoc networks in general, certain 
aspects of the formulation are specifically targeted to 
sensor networks. For example, we assume nodes are 
randomly placed, which could result when sensors are 
distributed over a region from a moving vehicle such as an 
airplane. We are also concerned, in part, with minimizing 
energy consumption, which, although being an important 
issue in wireless ad hoc networks in general, is vital in 
sensor networks. Sensor nodes are typically battery-
powered and, because replacing or recharging batteries is 
often very difficult or impossible, reducing energy 
consumption is the only way to extend network lifetime. 

In many applications of wireless ad hoc networks, the 
nodes are mobile. This complicates analysis of network 
characteristics because the network topology is constantly 
changing in this situation. In this work, we consider 
networks both with and without mobility. We present 
analytical results that apply to networks without mobility 
and confine ourselves to simulation results for networks 
with mobility due to the intractability of analysis with 
existing mathematical methods.  

Due to the relatively recent emergence of sensor 
networks, many fundamental questions remain un-
answered.  We address one of those questions, namely 
what are the conditions that must hold to ensure that a 
deployed network is connected initially and remains 
connected as nodes migrate? We address this question, and 
a number of related ones, in probabilistic terms, i.e. we 
evaluate the probabilities of various events related to 
network connectedness. The specific conditions we 
evaluate are how many nodes are required and what 
transmitting ranges must they have in order to establish a 
wireless ad hoc network with a particular property, e.g. 
connectedness. Determining an appropriate transmitting 
range for a given number of nodes is essential to minimize 
energy consumption since transmitting power is 
proportional to the square (or, depending on environmental �  This research was supported in part by the National Science

Foundation under Grant CCR-9803741. 
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conditions, to a higher power) of the transmitting range.  
Our evaluation of required transmitting range is also useful 
in directing various ‘topology control’ protocols, which try 
to dynamically adjust transmitting ranges in order to 
minimize energy consumption at run time [6,9,10]. The 
question of how many nodes are necessary for a given 
transmitting range is very important for planning and 
design of wireless ad hoc networks when devices employ a 
fixed transceiver technology. 

Our primary analytical result in this paper shows that a 
1-dimensional network with nodes placed over a region of 
length l is connected if and only if the product of the 
number of nodes and the transmitting range is on the order 
of at least l log l. This closes a gap between lower and 
upper bounds on this product that were established in an 
earlier paper [11]. Note that the 1-dimensional version of 
the problem does have important practical applications.  
The most notable such application is to cars on a freeway, 
which approximates a 1-dimensional region. An oft-cited 
potential use of mobile ad hoc networks is to have 
transmitters placed in cars that can transmit information 
about congestion or accidents to cars further back. By 
repeated relaying of such information, drivers far from the 
problem site can learn of the congestion and select an 
alternate route without waiting for a central notification 
system to learn of the event and post warning notices. 

We also evaluate 2-dimensional networks with mobility 
through extensive simulations. We compare two different 
mobility models, the random waypoint model, which 
models intentional movement, and the drunkard model, in 
which movement is random. In both mobility models, we 
have included a parameter that accounts for those 
situations in which some nodes are not able to move. For 
example, this could be the case when sensors are spread 
from a moving vehicle, and some of them remain 
entangled, say, in a bush or tree. This can also model a 
situation where two types of nodes are used, one type that 
is stationary and another type that is mobile. 

The goal of our simulations is to study the relationship 
between the value of the transmitting range ensuring 
connected graphs in the stationary case and the values of 
the transmitting range ensuring connected graphs during 
some fraction of the operational time. In this paper, we 
focus on the transmitting ranges needed to ensure 
connectedness during 100%, 90% and 10% of the 
simulation time. These values are chosen as indicative of 
three different dependability scenarios that the ad hoc 
network must satisfy. We also consider the value of the 
transmitting range ensuring that the average size of the 
largest connected component is a given fraction of the total 
number of nodes in the network. The rationale for this 
investigation is that the network designer could be 
interested in maintaining only a certain fraction of the 
nodes connected, if this would result in significant energy 
savings. Further, considering that in many scenarios (e.g. 

wireless sensor networks) the cost of a node is very low, it 
could also be the case that dispersing twice as many nodes 
as needed and setting the transmitting ranges in such a way 
that half of the nodes remain connected is a feasible and 
cost-effective solution. 

The results of our simulations have shown the 
somewhat surprising fact that, from a strictly statistical 
view of connectedness and connected component size, 
there are no major differences between the two mobility 
models. We also demonstrate that quite large reductions in 
transmitting range can be achieved if brief periods of 
disconnection are allowed and/or the network is allowed to 
operate with only a significant fraction of the nodes being 
connected. These results illustrate an energy vs. quality of 
communication trade-off that can be achieved in ad hoc 
networks, whereby the extent of communication capability 
can be somewhat reduced without great impact on the 
application and with the benefit of significantly reduced 
energy consumption. A final interesting result of our 
simulations shows that if about ½ or fewer of the nodes are 
mobile, then the network appears equivalent, in terms of 
statistical connectedness, to one without mobility. 

The properties we study in this paper are akin to a 
simple form of availability for wireless ad hoc networks.  
Assuming that a network is “up” if all nodes are connected 
and “down” otherwise, then the percentage of time it is 
connected is an estimate of network availability.  Since, in 
some applications, the network might be functional if at 
least a given fraction of nodes are connected, we also study 
the size of the largest connected component when the 
network is disconnected.  For these applications, the 
percentage of time for which a sufficiently large number of 
nodes are connected is an availability estimate. 

 
2 Preliminaries 

 
A d-dimensional mobile wireless ad hoc network is 

represented by a pair Md=(N,P), where N is the set of 
nodes, with |N|=n, and P: N×T→[0,l]d, for some l>0, is the 
placement function. The placement function assigns to 
every element of N and to any time t∈T a set of 
coordinates in the d-dimensional cube of side l, 
representing the node’s physical position at time t. The 
choice of limiting the admissible physical placement of 
nodes to a bounded region of Rd of the form [0,l]d, for 
some l>0, is realistic and will ease the probabilistic 
analysis of Section 3. If the physical node placement does 
not vary with time, the network is said to be stationary, 
and function P can be redefined simply as P: N →[0,l]d. 

In this paper, we assume that all the nodes in the 
network have the same transmitting range r. With this 
assumption, the communication graph of Md induced at 
time t, denoted GM(t), is defined as GM(t)=(N,E(t)), where 
the edge (u,v)∈E(t) if and only if v is at distance at most r 
from u at time t. If  (u,v)∈E(t), node v is said to be a 
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neighbor of u at time t. GM(t) corresponds to a point graph 
as defined in [12].  

In the next section, we consider probabilistic solutions 
to the following problem for stationary ad hoc networks:  

MINIMUM TRANSMITTING RANGE (MTR):  
Suppose n nodes are placed in [0,l]d; what is the minimum 
value of r such that the resulting communication graph is 
connected?  

Given the number of nodes, minimizing r while 
maintaining a connected network is of primary importance 
if energy consumption is to be reduced. In fact, the energy 
consumed by a node for communication is directly 
dependent on its transmitting range.  Further, a small value 
of r reduces the interferences between node transmissions, 
thus increasing the network capacity [5]. Observe that we 
could just as easily have stated the problem as one of 
finding the minimum number of nodes to ensure 
connectedness given a fixed transmitting range. This 
formulation is of primary importance in many dimen-
sioning problems arising in the design of wireless ad hoc 
networks. For example, solving this problem would answer 
the following fundamental question to the system designer: 
for a given transmitter technology, how many nodes must 
be distributed over a given region to ensure connectedness 
with high probability? In fact, our solutions typically 
specify requirements on the product of n and rd that 
ensures connectedness. These solutions can, therefore, be 
used to solve either MTR, as specified above, or the 
alternate formulation where the number of nodes is the 
primary concern.   

It should be observed that the solution to MTR depends 
on the information we have about the physical node 
placement. If the node placement is known in advance, the 
minimum value of r ensuring connectedness can be easily 
determined. Unfortunately, in many realistic scenarios of 
ad hoc networks the node placement cannot be known in 
advance, for example because nodes are spread from a 
moving vehicle (airplane, ship or spacecraft). If nodes’ 
positions are not known, the minimum value of r ensuring 
connectedness in all possible cases is r≈ dl , which 
accounts for the fact that nodes could be concentrated at 
opposite corners of the placement region. However, this 
scenario appears to be very unlikely in most realistic 
situations. For this reason MTR has been studied in [1,11] 
under the assumption that nodes are distributed 
independently and uniformly at random in the placement 
region.  

Observe that connectivity problems with formulations 
similar to MTR have also been studied in [4,7]. However, 
in these papers the deployment area is a fixed region (the 
unit disk in [4], or [0,1]2 in [7]), and the number of nodes 
is increased to infinity. Thus, the asymptotic investigation 
is for networks with increasing node density, and is 

expected to be accurate in dense networks. On the 
contrary, the problem formulation used in this paper does 
not force the node density to asymptotically increase to 
infinity.  

In the next section, we will improve the results of [1,11] 
for the case d=1 by means of a more accurate analysis of 
the conditions leading to disconnected communication 
graphs. The analysis will use some results of the 
occupancy theory [3], which are presented next. 

 The occupancy problem can be described as follows: 
assume we have C cells, and n balls to be thrown 
independently in the cells. The allocation of balls into cells 
can be characterized by means of random variables 
describing some property of the cells. The occupancy 
theory is aimed at determining the probability distribution 
of such variables as n and C grow to infinity (i.e., the limit 
distribution). The most studied random variable is the 
number of empty cells after all the balls have been thrown, 
which will be denoted µ(n,C) in the following. Under the 
assumption that the probability for any particular ball to 
fall into the i-th cell is 1/C for i=1,...,C (uniform 
allocation), the following results have been proved1: 

- ( )( ) ( )∑
=








 −−







==

C

i

n
i

C
i

i
C

CnP
0

110,µ  

- ( )[ ]
n

C
CCnE 







 −= 11,µ  

- ( )[ ] ( )
nnn

C
C

C
C

C
CCCnVar

2
2 1111211, 







 −−






 −+






 −−=µ , 

 
where E[µ(n,C)] and Var[µ(n,C)] denote the expected 
value and the variance of µ(n,C), respectively. The 
asymptotic behaviors of P(µ(n,C)=k), E[µ(n,C)] and 
Var[µ(n,C)] depend on the relative magnitudes of n and C 
as they grow to infinity. The following theorem has been 
proved: 

Theorem 1. For every n and C, ( )[ ] αµ −≤ CeCnE , , where 
α=n/C. Furthermore, if n,C→∞ in such a way that 
α=o(C), then: 
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Using the asymptotic formulas of Theorem 1, we can 

distinguish five different domains such that n,C→∞, for 
which the asymptotic distribution of the random variable 
µ(n,C) is different. These domains are: 

- the central domain (CD for short), when n=Θ(C); 

                                                           
1 All the results presented in this section are taken from [3]. 
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- the right-hand domain (RHD for short), when n= 
Θ(ClogC); 

- the left-hand domain (LHD for short), when n=Θ( C ); 

- the right-hand intermediate domain (RHID for short), 
when n=Ω(C) but C logC >> n;2 

- the left-hand intermediate domain (LHID for short), 
when n=O(C) but n>> C . 

The following theorem describes the limit distribution 
of µ(n,C) in the different domains. 

Theorem 2. The limit distribution of the random variable 
µ(n,C) is:  
- the normal distribution of parameters (E[µ(n,C)], 

( )[ ]CnVar ,µ ) in the CD, RHID and LHID; 
- the Poisson distribution of parameter λ in the RHD, 

where ( )[ ]CnE
Cn

,lim
,

µλ
∞→

= . 

Furthermore, in the LHD the limit distribution of the 
random variable η(n,C)=µ(n,C)-(C-n) is the Poisson 
distribution of parameter ρ , where ( )[ ]CnVar

Cn
,lim

,
µρ

∞→
= . 

 
3 Probabilistic analysis of MTR for 

stationary networks 
 
Consider the probability space (Ωl,Fl,Pl), where 

Ωl=[0,l], Fl is the family of all closed subsets of Ωl and Pl 
is a probability distribution on Ωl. In this paper, we assume 
that Pl is the uniform distribution on Ωl. Under this setting, 
nodes in N can be modeled as independent random 
variables uniformly distributed in [0,l], which will be 
denoted Z1,…,Zn. 

We say that an event Vk, describing a property of a 
random structure depending on a parameter k, holds 
asymptotically almost surely (a.a.s. for short), if P(Vk) →1 
as k→∞. In the following we consider the asymptotic 
behavior of the event CONNECTEDl on the random 
structures (Ωl,Fl,Pl) as l→∞. Informally speaking, event 
CONNECTEDl corresponds to all the values of the random 
variables Z1,..,Zn for which the communication graph is 
connected.  

The following upper bound on the magnitude of rn 
ensuring a.a.s. connectedness has been derived in [1]. 

Theorem 3. Suppose n nodes are placed in [0,l] according 
to the uniform distribution. If rn∈Θ(l log l) and r>>1, then 
the communication graph is a.a.s. connected. 

                                                           
2 Notation f(x)<<g(x) (resp., f(x)>>g(x)) is used to denote the fact that 

f(x)/g(x)→0 (resp., ∞) as x→∞. 

Observe that the constraint r>>1 in the statement of the 
theorem is not restrictive, since we are interested in 
investigating the magnitudes of r such that 1<<r<<l. 

In [11], a lower bound on the magnitude of rn ensuring 
a high probability of connectedness is derived by analyzing 
the probability of existence of an isolated node. In fact, the 
existence of an isolated node implies that the resulting 
communication graph (which is a point graph) is 
disconnected. However, the class of disconnected point 
graphs is much larger than the class of point graphs 
containing at least one isolated node. For this reason, the 
bounds established in [11] are not tight, and the gap 
between the lower and upper bounds on the magnitude of 
rn is in the order of log l. In [1], it is conjectured that the 
upper bound stated in Theorem 3 is actually tight. This 
intuition has been experimentally confirmed by the results 
of extensive simulations [1,11]. In what follows, we prove 
that the conjecture stated in [1] is true for 1-dimensional 
networks. The result derives from a more accurate 
approximation of the class of disconnected point graphs, 
which is based on occupancy theory. This allows us to 
“close the gap”, proving the tightness of the bound stated 
in Theorem 3. 

r 

0 l 

 
Figure 1.  Node placement generating a disconnected 

communication graph. 

In order to derive the lower bound, we consider the 
following subdivision of the placement region into cells. 
We assume that a line of length l is subdivided into C=l/r 
segments of equal length r. With this subdivision, if there 
exists an empty cell ci separating two cells ci-1,ci+1 that each 
contains at least one node, then the nodes in ci-1 are unable 
to communicate to those in ci+1, and the resulting 
communication graph is disconnected (see Figure 1). The 
following lemma, whose immediate proof is omitted, 
establishes a sufficient condition for the communication 
graph to be disconnected. 

Lemma 1. Assume that n nodes are placed in [0,l], and 
that the line is divided into C=l/r segments of equal length 
r. Assign to every cell ci, for i=0,..,C-1, a bit bi, denoting 
the presence of at least one node in the cell. Without loss 
of generality, assume bi=0 if ci is empty, and bi=1 
otherwise. Let B={b0...bC-1} be the string obtained by 
concatenating the bits bi, for i=0,..,C-1. If B contains a 
substring of the form {10*1}, where 0* denotes that one or 
more 0s may occur, then the resulting communication 
graph is disconnected. 

Observe that the condition stated in Lemma 1 is 
sufficient but not necessary to produce a disconnected 
graph. In fact, there exist node placements such that B does 
not contain any substring of the form {10*1}, but the 
resulting communication graph is disconnected. 
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Let us denote with CONNECTEDl, DISCONNECTEDl, 
and 1*10

lE  the events corresponding to all the values of the 
random variables Z1,..Zn such that the resulting com-
munication graph is connected, disconnected, or a 
substring of the form {10*1} occurs in B, respectively. The 
subscript l indicates that we are considering these events in 
the case that the length of the line is l. Since 
CONNECTEDl=Ωl-DISCONNECTEDl and 1*10

lE ⊂DIS-
CONNECTEDl, it is immediate that a necessary condition 
for a.a.s. connectedness is that ( )1*10lim ll

EP
∞→

 = 0. 

In order to evaluate ( )1*10lim ll
EP

∞→
, we decompose the 

event 1*10
lE  by conditioning on the disjoint events 

{µ(n,C)=k}, for k=0,..,C; i.e.,  

( ) ( ){ }( ) ( )( )∑
=

=⋅==
C

k
ll kCnPkCnEPEP

0

1*101*10 ,,| µµ   (1). 

Observe that when l goes to infinity ( )1*10
lEP  is defined 

as the sum of an infinite number of non-negative terms 
t1,t2,… . Clearly, if there exists at least one term kt  such 
that 0lim >=

∞→
εkl

t , then ( ) 0lim 1*10 >≥
∞→

εll
EP . In what follows, 

we prove that if l<<rn<<l log l and k = ( )[ ] CnE ,µ , then 
0lim >=

∞→
εkl

t , thus implying that the resulting com-

munication graph is not a.a.s. connected. 
We start with a lemma that characterizes the asymptotic 

behavior of ( ){ }( )kCnEP l =,|1*10 µ  as l goes to infinity. 

Lemma 2. If 0<k<<C, then ( ){ }( ) 1,|lim 1*10 ==
∞→

kCnEP ll
µ . 

Proof. See Appendix. 

We now state the main theorem of this section. 

Theorem 4. Assume that l<<rn<<l log l. Then 
( ) 0lim 1*10 >≥

∞→
εll

EP . 

Proof. See Appendix. 

Combining the result stated in Theorem 4 with the 
bound of Theorem 3, we conclude this section with the 
following theorem. 

Theorem 5. Suppose n nodes are placed in [0,l] according 
to the uniform distribution, and assume 1<<r<<l. The 
communication graph is a.a.s. connected if and only if 
rn∈Ω(l log l). 

The result stated in Theorem 5, for random distribution 
of nodes, should be compared to the transmitting ranges 
necessary with worst-case and best-case placements.  To 
illustrate this, consider the case where the number of nodes 
is linear with the length of the line, l. In the worst-case, 
nodes are clustered at either end of the line and the 
transmitting range must be Ω(l) for the network to be 

connected.  In the best-case placement, nodes are equally 
spaced at intervals of l/n, which in this case is a constant.  
Hence, a constant transmitting range is sufficient in the 
best case. Theorem 5’s result yields a transmitting range of 
Ω(log l) with random placement. Thus, there is a 
substantial reduction in transmitting range from the worst-
case but also a significant increase compared to the best-
case. 

 
4 Evaluation of MTR for mobile networks 

 
In this section, we consider the mobile version of MTR, 

which can be formulated as follows: 

MINIMUM TRANSMITTING RANGE MOBILE (MTRM):  
Suppose n nodes are placed in [0,l]d, and assume that 
nodes are allowed to move during a time interval [0,T]. 
What is the minimum value of r such that the resulting 
communication graph is connected during some fraction, f, 
of the interval? 

A formal analysis of MTRM is much more complicated 
than that of MTR and is beyond the scope of this paper. In 
this section, we study MTRM by means of extensive 
simulations. The goal is to study the relationship between 
the value of r ensuring connected graphs in the stationary 
case (denoted rstationary) and the values of the transmitting 
range ensuring connected graphs during some fraction of 
the operational time. In this paper, we focus on the 
transmitting ranges needed to ensure connectedness during 
100%, 90% and 10% of the simulation time (denoted r100, 
r90 and r10, respectively). These values are chosen as 
indicative of three different dependability scenarios that 
the ad hoc network must satisfy. In the first case, the 
network is used for safety-critical or life-critical 
applications (e.g., systems to detect physical intrusions in a 
home or business), and network connectedness during the 
entire operational time is a vital requirement. In this 
scenario, the potentially high price (expressed in terms of 
increased energy consumption) to be paid to keep the 
network always connected is a secondary issue. In the 
second case, temporary network disconnections can be 
tolerated, especially if this is counterbalanced by a 
significant decrease of the energy consumption with 
respect to the case of continuous connectedness. This 
scenario is plausible in many applications of wireless ad 
hoc networks, e.g. when the network is used to connect a 
squad of workers in an oil platform. In the latter case, the 
network stays disconnected most of the time, but 
temporary connection periods can be used to exchange 
data among nodes. This could be the case of wireless 
sensor networks [8] used for environmental monitoring 
[13], where environmental data (e.g., temperature, 
pressure, air pollution levels) are gathered by sensors, 
which periodically exchange these data with the other 
nodes in order to build a global view of the monitored 
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region. In this setting, reducing energy consumption is the 
primary concern, and temporary connectedness is 
sufficient to ensure that the data sent by a sensor is 
eventually received by the other nodes in the network. 

 
 

4.1  Simulation models 
 
To generate the results of this section, we extended the 

simulator used in [1,11] for the stationary case by 
implementing two mobility models. The simulator 
distributes n nodes in [0,l]d according to the uniform 
distribution, then generates the communication graph 
assuming that all nodes have the same transmitting range r. 
Parameters r, n, l and d are given as input to the simulator, 
along with the number of iterations to run and the number, 
#steps, of mobility steps for each iteration. Setting 
#steps=1 corresponds to the stationary case. The simulator 
returns the percentage of connected graphs generated, the 
average size of the largest connected component (averaged 
over the runs that yield a disconnected graph) and the 
minimum size of the largest connected component. All of 
these parameters are reported with reference both to a 
single iteration (in this case, the averages are over all the 
mobility steps) and to all the iterations. In all simulations 
reported herein, we set d=2, as the two-dimensional setting 
is an appropriate model for many applications of wireless 
ad hoc networks.  

Two mobility models have been implemented. The first 
model is the classical random waypoint model [2], and is 
used to model intentional movement: every node chooses 
uniformly at random a destination in [0,l]d, and moves 
toward it with a velocity chosen uniformly at random in 
the interval [vmin,vmax]. When it reaches the destination, it 
remains stationary for a predefined pause time tpause, and 
then it starts moving again according to the same rule. In 
the simulator, tpause is expressed as the number of mobility 
steps for which the node must remain stationary. We have 
also included a further parameter in the model, namely the 
probability pstationary that a node remains stationary during 
the entire simulation time. Hence, only (1-pstationary)n nodes 
(on the average) will move. Introducing pstationary in the 
model accounts for those situations in which some nodes 
are not able to move. For example, this could be the case 
when sensors are spread from a moving vehicle, and some 
of them remain entangled, say, in a bush or tree. This can 
also model a situation where two types of nodes are used, 
one type that is stationary and another type that is mobile. 

The second mobility model resembles a drunkard-like 
(i.e., non-intentional) motion. Mobility is modeled using 
parameters pstationary, ppause and m. Parameter pstationary is 
defined as above. Parameter ppause is the probability that a 
node remains stationary at a given step. This parameter 
accounts for heterogeneous mobility patterns, in which 
nodes may move at different times. Intuitively, the higher 

is the value of ppause, the more heterogeneous is the 
mobility pattern. However, values of ppause close to 1 result 
in an almost stationary network. If a node is moving at step 
i, its position in step i+1 is chosen uniformly at random in 
the disk of radius m centered at the current node location. 
Parameter m models, to a certain extent, the velocity of the 
nodes: the larger m is, the more likely it is that a node 
moves far away from its position in the previous step.  

 
4.2 Simulation results for increasing system size 

  
The first set of simulations was aimed at investigating 

the value of the ratio of r100 (respectively, of r90 and r10) to 
rstationary for values of l ranging from 256 to 16384. We also 
considered the largest value r0 of the transmitting range 
that yields no connected graphs. In both mobility models, n 
was set to l . The value of rstationary is obtained from the 
simulation results for the stationary case reported in [1,11], 
while those for r100, r90, r10 and r0 are averaged over 50 
simulations of 10000 steps of mobility each. 

First, we considered the random waypoint model, with 
parameters set as follows: pstationary=0, vmin=0.1, vmax=0.01l, 
and tpause=2000. This setting models a moderate mobility 
scenario, in which all the nodes are moving, but their 
velocity is rather low. The effect of different choices of the 
mobility parameters on the values of r100, r90 and r10 is 
studied in the next sub-section. The values of the ratios are 
reported in Figure 2. Figure 3 reports the same graphic 
obtained for the drunkard model, with pstationary=0.1, 
ppause=0.3 and m=0.01l. This is also a moderate mobility 
scenario, but more heterogeneous than the other: a small 
percentage of the nodes remain stationary, and mobile 
nodes are stationary for 30% of the simulation time (on 
average). 

The graphics show the same qualitative behavior: as l 
increases, the ratio of the different transmitting ranges for 
mobility to rstationary tends to increase, and this increasing 
behavior is more pronounced for the case of r100. However, 
even when the system is large, a modest increase to 
rstationary (about 21% in the random waypoint and about 
25% in the drunkard model) is sufficient to ensure 
connectedness during the entire simulation time. 
Comparing the results for the two mobility models, we can 
see somewhat higher values of the ratios for the drunkard 
model, especially for the case of r100. This seems to 
indicate that more homogeneous mobility patterns help in 
maintaining connectedness.  However, it is surprising that 
the results for the two mobility models are so similar. This 
indicates that it is more the existence of mobility rather 
than the precise details of how nodes move that is 
significant, at least as far as network connectedness is 
concerned. 

It should also be observed that r90 is far smaller than r100 
(about 35-40% smaller) in both mobility models, 
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Figure 2. Values of rx/rstationary for increasing values of l in 

the random waypoint model. 
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Figure 4. Average size of the largest connected 

component (expressed as a fraction of n) for 
increasing values of l in the random waypoint 
model. 

 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

256 1K 4K 16K

r100

r90

r10

r0

 
Figure 3. Values of rx/rstationary for increasing values of l in 

the drunkard model. 
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Figure 5. Average size of the largest connected 

component (expressed as a fraction of n) for 
increasing values of l in the drunkard model. 

independently of the system size. Hence, substantial 
energy savings can be achieved under both models if 
temporary disconnections can be tolerated. When the 
requirement for connectedness is only 10% of the 
operational time, the decrease in the transmitting range is 
about 55-60%, enabling further energy savings. However, 
if r is reduced to about 25% to 40% of rstationary, the 
network becomes disconnected during the entire 
simulation time. 

The average size of the largest connected component 
when the transmitting range is set to r90, r10 and r0 was also 
investigated. Simulation results are displayed in Figures 4 
and 5. Once again, the graphics show very similar 
behaviors: the ratio of the average size of the largest 
connected component to n increases as l increases. When 
the transmitting range is set to r90 and l is sufficiently 
large, this ratio is very close to 1 (about 0.98 in both 
mobility models). This means that during the short time in 
which the network is disconnected, a vast majority of its 
nodes forms a large connected component. Hence, on the 
average disconnection is caused by only a few isolated 
nodes. This fact is confirmed by the plots for r10: even 
when the network is disconnected most of the time, a large 

connected component (of average size about 0.9n for large 
values of l) still exists. However, if the transmitting range 
is further decreased to r0, the size of the largest connected 
component drops to about 0.5n. 

We also considered the value of the transmitting range 
ensuring that the average size of the largest connected 
component is 0.9n, 0.75n and 0.5n, respectively. The 
corresponding values of the transmitting range are denoted 
rl90, rl75 and rl50. The mobility parameters and n were set as 
above. The rationale for this investigation is that the 
network designer could be interested in maintaining only a 
certain fraction of the nodes connected, if this would result 
in significant energy savings. Further, considering that in 
many scenarios (e.g. wireless sensor networks) the cost of 
a node is very low, it could also be the case that dispersing 
twice as many nodes as needed and setting the transmitting 
ranges in such a way that half of the nodes remain 
connected is a feasible and cost-effective solution.  

The value of the ratio of rl90, rl75 and rl50 to rstationary for 
increasing values of l in the random waypoint model is 
shown in Figure 6. Simulation results have shown that 
while rl90/rstationary tends to decrease with increasing values 
of l, converging to about 0.52, the ratios rl75/rstationary and 
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Figure 6.  Values of the ratio rl90, rl75 and rl50 to rstationary for l 

ranging from 256 to 16384 in the random 
waypoint model. 
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Figure 8.  Value of r100/rstationary for values of tpause ranging 

from 0 to 10000 in random waypoint model. 
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Figure 7.  Value of r100/rstationary for different values of 

pstationary in the random waypoint model. 
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Figure 9.  Value of r100/rstationary for values of vmax ranging 

from 0.01l to 0.5l in random waypoint model. 
 

rl50/rstationary are almost independent of l. In particular, 
rl75/rstationary is about 0.46 and rl50/rstationary is about 0.4. 
Further, the relative differences between the three ratios 
decrease for increasing value of l. This indicates that, while 
for small networks (few nodes distributed in a relatively 
small region) the energy needed to maintain 90% of the 
nodes connected is significantly higher than that required 
to connect 50% of the nodes (rl50 is less than half of rl90 for 
l=256), for large networks the savings are not as great if 
the requirement for connectivity is only 50% of the nodes 
(rl50 is 20% smaller than rl90 for l=16384). 

 
4.3 Simulation results for different mobility 

patterns 
 
A second set of simulations was done to investigate the 

effect of different choices of the mobility parameters on 
the value of r100. We considered the random waypoint 
model with l=4096 and n= l =64. The default values of 
the mobility parameters were set as above, i.e. pstationary=0, 
vmin=0.1, vmax=0.01l, and tpause=2000. Then, we varied the 
value of one parameter, leaving the others unchanged. 

Figure 7 reports the value of r100 for values of pstationary 
ranging from 0 (no stationary nodes) to 1 (corresponding 
to the stationary case) in steps of 0.2. Simulation results 
show a sharp drop of r100 in the interval 0.4-0.6: for 
pstationary=0.4, r100 is about 10% larger than rstationary, while 
for pstationary=0.6 and for larger values of pstationary we have 
r100≈rstationary. To investigate this drop more closely, we 
performed further simulations by exploring the interval 
0.4-0.6 in steps of 0.02. As shown in Figure 7, there is a 
distinct threshold phenomenon: when the number of 
stationary nodes is about n/2 or higher, the network can be 
regarded as practically stationary from a connectedness 
point of view. This result is very interesting, since it seems 
to indicate that a certain number (albeit a rather large 
fraction) of stationary nodes would significantly increase 
network connectedness.  With more than n/2 mobile nodes, 
the network quickly becomes equivalent to one in which 
all nodes are mobile. 

The effect of tpause and of the velocity on r100 is shown in 
Figures 8 and 9. Increasing values of tpause tend to decrease 
the value of r100, although the trend is not as pronounced as 
in the case of pstationary. A threshold phenomenon seems to 
exist in the interval 4000-6000 in this case also. However, 
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further simulations in this interval have shown that, 
although the trend can be observed, no sharp threshold 
actually exists. We believe that the rationale for this is the 
following: while the value of pstationary has a direct impact 
on the "quantity of mobility" (which can be informally 
understood as the percentage of stationary nodes with 
respect to the total number of nodes), the effect of the 
pause time is not so direct. In fact, in the random waypoint 
model the "quantity of mobility" depends heavily on the 
node destinations, which are chosen uniformly at random: 
even if the pause time is long and the velocity is moderate, 
a node could be "mobile" for a long time if its destination 
is very far from its initial location. So, an increased pause 
time tends to render the system more stationary, but in a 
much less direct way than pstationary.  

As shown in Figure 9, the value of r100 is almost 
independent of the value of vmax: except for low velocities 
(vmax below 0.1l), r100 is slightly above rstationary. This 
surprising result could be due to the apparently 
counterintuitive fact that the “quantity of mobility” is only 
marginally influenced by the value of vmax, and a larger 
value of vmax tends to decrease the “quantity of mobility”. 
In fact, the larger is vmax, the more likely it is that nodes 
arrive quickly at destination and remain stationary for 
tpause=2000 steps. 

 
5. Conclusions 

 
In this paper, we considered a connectivity problem in 

the case of both stationary and mobile wireless ad hoc 
networks. For the stationary case, we have derived tight 
bounds on the magnitude of r, n and l ensuring 
connectedness with high probability for 1-dimensional 
networks. Our bounds improve on existing results, and 
prove a conjecture stated in a previous paper. We have also 
investigated the mobile version of the problem for 2-
dimensional networks through extensive simulation. We 
implemented two motion patterns to model both 
intentional and non-intentional movements, and we 
simulated 2-dimensional networks of different sizes and 
using different mobility parameters. Simulation results 
have shown that consistent energy savings can be achieved 
if temporary disconnections can be tolerated or if 
connectedness must be ensured only for a large fraction of 
the nodes. Regarding the influence of mobility patterns, 
simulation results have shown that connectedness is only 
marginally influenced by whether motion is intentional or 
not, but it is rather related to the “quantity of mobility”, 
which can be informally defined as the percentage of 
stationary nodes with respect to the total number of nodes. 
For example, when about n/2 nodes are static, the network 
can be regarded as stationary from a connectivity point of 
view. Further investigation in this direction is needed, and 
is a matter of ongoing research. 
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Appendix 

 
Proof of Lemma 2. 
Consider the complementary event of 1*10

lE , i.e. 
1*101

lll EE −Ω= . It can be easily seen that 1
lE  corresponds 

to all the values of the random variables Z1,..Zn such that 
the 1-bits in B are consecutives. Given the hypothesis of 
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independence of the random variables Z1,..Zn, when exactly 
k cells out of C are empty (i.e., k bits in B are 0), 

( ){ }( )kCnEP l =,|1 µ  corresponds to the ratio of all 
configurations of (n-k) consecutive 1-bits over all possible 
configurations of k 0-bits in C positions, i.e.: 
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Since C=l/r and r<<l, we have:  
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We can rewrite the last limit as: 
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Since k<<C, we have: 
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Taking the logarithm, we obtain: 
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Since 0<k<<C, we conclude that ( ) −∞=−
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hence: 

01lim =










+
∞→

k
C

k
C

, 

and the Lemma is proved.  
  � 

 
Proof of Theorem 4. 
By Equation (1) and Lemma 2, it is sufficient to show that 
there exists a value k such that: 

- 0< k <<C, and 
- ( )( ) 0,lim >≥=

∞→
εµ kCnP

l
. 

Consider k = ( )[ ] CnE ,µ . From Theorem 1, we have that 
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where α=n/C=rn/l.  
Since l<<rn<<l log l, we have 1<<α=f(l)<<log l, and (2) 
can be rewritten as 

)(lfre
lk ≈ , with C

r
lk

r
=<<<<< 10 ,  

hence the first condition is satisfied. 
Observe that the condition l<<rn<<l log l implies that 
C<<n<<C log C, i.e. we are in the RHID. By Theorem 2, it 
follows that the limit distribution of µ(n,C) as n,C go to 
infinity is the normal distribution of parameters 
(E[µ(n,C)], ( )[ ]CnVar ,µ ). By Theorem 1, Var[µ(n,C)] can 
be rewritten as 
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Hence, we have: 

( )( )
( )[ ] l

re
CnVar

kCnP
lf

⋅
≈≈=

πµπ
µ

2,2
1,

)(
 

Let us choose 
)(lfe

lr δ= , for some 0<δ ≤2π. Observe that 

this choice of r is consistent with the hypothesis 1<<r<<l, 

since we have l
e

l
lf
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1 . With this choice of r, we can 

write the limit as follows: 
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and the theorem is proved.   
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