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ABSTRACT
The problem that we consider is that of maximizing

throughput in a MIMO network while accounting for vari-
able rate streams on MIMO links. The stream rates on a link
depend on the channel conditions of the link, and the manner
in which the diversity-multiplexing tradeoff is handled. In
this work, we use the dependence of stream rates on the chan-
nel to develop methods of link selection and stream alloca-
tion that approximately maximize the aggregate throughput.
Maximizing throughput is closely tied to the problem of allo-
cating streams based on the stream rates of the selected links.
Doing this optimally is very complex even for networks with
10 or fewer links. We develop a stream allocation heuristic
that approximately maximizes the throughput over a given
set of links. Simulation results for single collision domain
networks show that our stream allocation heuristic is within
7% of optimal in networks with up to 10 links (in a typical
case where the maximum concurrency allowed is 15 links).
The algorithm also cuts the difference between heuristic and
optimal results in half, compared to a simple greedy algo-
rithm. Our research has also identified the feasibility check-
ing problem for general MIMO networks as being a compu-
tationally hard problem. However, we also identify several
practical special cases, e.g. when interference suppression is
done only at the receiver side, for which feasibility checking
remains a polynomial-time operation.

1. INTRODUCTION

Deployments of all-wireless networks are increasing rapidly
due to the emergence of wireless mesh networks and WiMax.
These networks are expected to compete with all wired net-
works and combination wired/wireless networks in terms of
performance. Thus, the problem of maximizing through-
put in all-wireless networks is extremely important. One of
the most promising approaches to throughput improvement
in wireless networks is the use of multiple-input multiple-
output, or MIMO, technology. Applying MIMO on indi-
vidual links can provide an immediate throughput boost to
these networks. However, optimizing the use of MIMO re-
sources across the entire network has the potential to improve
throughput by an even greater amount. For example, our
prior work has demonstrated that the total number of con-
current streams that can be supported across a network can
be doubled if network-wide optimization techniques are em-
ployed, as opposed to link-by-link optimization [13].

In this paper, we consider the problem of maximiz-
ing throughput in a MIMO network while accounting for
variable-rate streams on individual MIMO links, as well as
across different links. This represents the first attempt toex-
actly characterize and solve a MIMO network optimization

problem with a general rate model. Within this framework,
we decompose the maximum throughput problem into sim-
pler problems, the solutions of which can be combined into
a throughput optimization procedure. The sub-problems we
study are referred to as feasibility checking, stream alloca-
tion, and one-shot link scheduling, and are formally defined
in Section 4.

We first show that the feasibility checking problem for
MIMO links is a variation of the Boolean satisfiability prob-
lem and is, therefore, very likely to be NP-complete. This is
in contrast to feasibility for non-MIMO links, which is poly-
nomial in complexity. A popular greedy approach to schedul-
ing algorithms for wireless networks, e.g. [1, 2, 4, 12], re-
lies on the efficiency of feasibility checking and this result
could be a significant impediment to applying this popular
scheduling approach to MIMO networks. However, we also
show several practical special cases of the MIMO network
problem, which do still have polynomial-time feasibility,e.g.
when interference suppression is done only on the receiver
side but not on the transmitter side. In terms of the overall
throughput maximization problem, the algorithm we present
is shown through simulation to be within 7% of optimal for
networks with up to 10 links. Due to the computational com-
plexity of finding optimal solutions, comparison against op-
timal was not possible for larger networks. However, over
the same range of network sizes, our approach was shown to
reduce the difference between heuristic and optimal results
by half, compared to a greedy algorithm.

2. RELATED WORK

While a vast body of literature has been devoted to the in-
vestigation of MIMO channel capacity in typical configura-
tions such as one-to-one, one-to-all, all-to-one, etc., the is-
sue of characterizing capacity of MIMO-equippednetworks
has been approached only recently. The difficulty in achiev-
ing such characterizations is that usage of MIMO links in-
troduces additional optimization knobs into an already very
complex optimization problem involving routing, transmit
power control, and scheduling in the most general formula-
tion. For these reasons, researchers have typically introduced
some simplification in the models and/or problem formula-
tion.

For instance, in [9] the authors provideupper bounds
to the achievable throughput in a MIMO equipped wireless
multi-hop network, under the assumption that perfect CSI
is available at both transmitter and receiver, and that only
spatial multiplexing and interference suppression is used. In
[3], the authors characterize the benefits of cross-layer opti-
mizations in interference-limited MIMO-equipped wireless
mesh networks providing an LP-based formulation of the



joint routing and link scheduling problem, and a heuristic
to solve the resulting throughput optimization problem sub-
ject to fairness constraints. Note that both these approaches
provide onlyboundsto the achievable network throughput.
A few other papers attempted at characterizing theoptimal
throughput achieved in quite restricted network scenarios.
For instance, in our previous work [13] we characterized
the optimal throughput achievable in a single collision do-
main network, under the assumption that only spatial mul-
tiplexing and interference suppression are considered and
that all streams have the same data rate. In [6], the au-
thor approaches maximum throughput characterization in a
single-hop network through presenting a joint scheduling and
MIMO stream allocation problem, and characterizes the op-
timal solution for the case of two interfering links.

Our variable rate model accounts for sub-linear in-
crease of aggregate rate with the number of streams on
a link. A few papers have considered non-linear aggre-
gate rates when attempting to characterize throughput of
MIMO-equipped networks, by including so-calledvariable
ratestream control in the problem formulation. Variable-rate
stream control for CSMA-based MAC layer has been dis-
cussed in [14]. Our results, and other optimization-based
approaches, target TDMA-based MACs. The approaches
of [15] and [5] consider variable rate stream control but only
provide upper bounds complemented with feasible heuristic
approaches [15], or simply heuristic solutions [5]. Thus, to
the best of our knowledge, the problem addressed in this pa-
per of characterizingoptimal throughput with variable-rate
stream control has not yet been investigated.

3. BACKGROUND AND NETWORK MODEL

3.1 MIMO Degrees of Freedom Model

While MIMO links can be used in a variety of ways to
achieve different performance and/or reliability goals, the
primary aspects that we consider herein are spatial multi-
plexing and interference suppression. These aspects are often
represented by a degrees of freedom (DOF) model. In a DOF
model, a node withk elements in its antenna array has up to
k DOFs, which it can use for spatial multiplexing and/or sup-
pressing interference between its link and other concurrently
transmitting links.1 In the absence of interference, a link with
kt DOFs at the transmitter andkr DOFs at the receiver can
support up to min(kt ,kr) spatially multiplexed streams. If
DOFs are used for interference suppression, then the number
of spatially multiplexed streams that can be supported on a
link will be reduced.

With a MIMO link, interference suppression can be done
by the transmitter or by the receiver or both. To com-
pletely eliminate interference requires channel state infor-
mation (CSI). Receivers can measure channels during trans-
mission of probe sequences in order to collect CSI neces-
sary both for interference suppression and for performance
optimization of the channel. CSI can be fed back from re-
ceivers to transmitters. It is commonly assumed that channels
are symmetric, thereby also allowing transmitters to measure
CSI by exchanging roles with receivers. In general, we as-

1Due to possible correlations in the channel, the usable DOFsmight be
lower. The actual DOFs that a node can use are often referred to as the
effectiveDOFs. Throughout the paper, we will assume the total DOFs usable
by a node are its effective DOFs and, in most cases, we will dropthe use of
the term “effective” for simplicity.

sume that interference suppression can be done by both trans-
mitters and receivers. However, it is common to have inter-
ference suppression done only at receivers.We refer to this
as the “receiver-side suppression only” case. Although it is
not used in actual networks as far as we know, for complete-
ness we also consider the “transmitter-side suppression only”
case.

The number of DOFs needed by a transmitter to suppress
interference on a concurrent receiver is equal to the num-
ber of streams that are spatially multiplexed on the receiver’s
link. Similarly, the number of DOFs needed by a receiver to
suppress interference from a concurrent transmitter is equal
to the number of streams that are spatially multiplexed on the
transmitter’s link. Assume that a nodei hask DOFs, spatially
multiplexessi streams on its link, and suppresses interference
with other nodesj1, . . . , jn, carryingsj l streams respectively.
Then, the following inequality must be satisfied:

si +
n

∑
l=1

sj l ≤ k

3.2 Network Model

In this paper, we focus primarily on single collision domain
networks. By this, we mean that all links in the network in-
terfere with each other sufficiently so that no two links can be
used concurrently without suppressing interference between
them. A single collision domain network can result from
a set of users in one area who want to engage in pair-wise
communications with each other. A single collision domain
can also be considered as a single contention region within a
larger network [14].

Our results on the feasibility problem (see Sections 4.1
and 5) apply to arbitrary multi-hop networks, and so we
loosen the single collision domain assumption when consid-
ering this problem. For this case only, we adopt a simple
and symmetric binary interference model wherein two links
either interfere completely or not at all. Thus, we define a
conflict graphGc = (Vc,Ec), whereVc is the set of links in
the multi-hop network ande= (l i , l j) ∈ Ec if and only if link
l i interferes with linkl j .

A basic constraint on concurrency of transmissions is that
each node can participate in one transmission at a time, ei-
ther as transmitter or as receiver.2 A set of links is said to
beprimary-interference-freeif and only if every node in the
network appears as an endpoint of at most one link in the set.

3.3 Rates and Streams

In prior work, we considered how to maximize the total num-
ber of streams that can be concurrently transmitted in the sin-
gle collision domain scenario [13]. However, we are really
interested in maximizing the aggregate rate of data transmis-
sions. Since streams on different links can have different
rates and also because rate on a single MIMO link does not
necessarily increase linearly with the number of streams on
the link, maximizing the number of streams does not nec-
essarily maximize the aggregate transmission rate. The rate
on an individual link is determined by the characteristics of
the channel in between the transmitter and receiver, as well
as how many DOFs are used at the transmitter and the re-
ceiver for multiplexing. We model this with a rate function

2Here, we assume each node is equipped with only a single radio.



R(ti , r i ,ADOFti ,ADOFr i ), which gives the rate on the link
(ti , r i) when ADOFti DOFs are available atti and ADOFr i
DOFs are available atr i . We do not make any assumption on
the rate function, i.e. it can be an arbitrary function. Note
that, if the channel betweenti andr i is random (as is the case
with Rayleigh fading channels, for example), the rate on the
link is also a random variable depending on the channel char-
acteristics. In this case, we interpretR as the expected data
rate, which can also be thought of as the long-term rate on
the link if its channel characteristics change dynamicallyand
at random.

While allocating more streams on a linkl increases the
aggregate rate on that specific link, more radio resources
(DOFs) need to be used in the network to cancel the in-
terference generated by the transmitter of linkl . So, how
to optimally allocate streams and DOFs becomes a com-
plex optimization problem even in a single collision do-
main MIMO network. For a fixed DOF assignment on
a link l , the optimal number of streams carried byl de-
pends on the channel characteristics and the available DOFs
at the transmitter and receiver. As with the rate func-
tion, we can represent the number of streams by a function
s(ti , r i ,ADOFti ,ADOFr i ) ≤ min(ADOFti ,ADOFr i ). In this
paper, we make the simplifying assumption that the num-
ber of streams is exactly min(ADOFti ,ADOFr i ). The only
situation in which a smaller number of streams is optimal
is when the channel betweenti andr i is so weak that using
DOFs to boost signal strength is preferable to increasing the
number of spatially multiplexed streams. In the single col-
lision domain scenario, where all nodes are within a small
geographical area, it is reasonable to assume that all chan-
nels are sufficiently strong so that maximizing streams on a
link also maximizes the link’s rate.

4. PROBLEM DEFINITION

4.1 Feasibility

The problem of feasibility is to determine if a set of transmis-
sions can be undertaken concurrently such that all individ-
ual transmissions are successful, under a given interference
model. Many existing scheduling algorithms assume that
feasibility can be determined efficiently [1, 2, 4, 12]. These
algorithms iteratively add transmissions to slots in a frame,
checking a slot for feasibility whenever a new transmission
is proposed to be added to a slot by the algorithm. Thus, fea-
sibility is considered to be a very simple operation that can
be repeated many times during execution of the scheduling
algorithm. One of the interesting findings of this research is
that with MIMO links, in certain cases, feasibility checking
becomes a very expensive operation. In these cases, the scal-
ability with increasing network size could be quite limitedfor
this iterative schedule construction with repeated feasibility
checking approach. Thus, alternative scheduling approaches
might have to be developed for the most general MIMO link
scheduling problems.

Without MIMO links, checking feasibility of a set of
transmissions amounts to simply checking the transmissions
against the given interference model. However, MIMO links
have the capability to suppress interference. Thus, whether a
set of transmissions is feasible depends both on the interfer-
ence model and on how the links choose to use their degrees
of freedom (DOFs) in suppressing interference. As detailed
earlier, the number of DOFs necessary for the transmitter of

a link i to suppress interference on the receiver of a linkj
is given by the number of streams carried on linkj. (The
same is true if the receiver ofi is suppressing interference
from the transmitter ofj.) Thus, to determine feasibility, we
must know both which links are transmittingandhow many
streams are carried on each of the links.

Let the set of links under consideration be denoted by
L = {(t1, r1), . . . ,(tm, rm)}. Let S= [s1, . . . ,sm] be the stream
allocation vector, i.e. the number of streams carried by(ti , r i)
is si > 0.Let Kt = [kt

1, . . . ,k
t
m] be the vector of (effective)

DOFs of the transmitters, Similarly, letKr = [kr
1, . . . ,k

r
m] be

the vector of (effective) DOFs of the receivers. Letat
i j = 1

if the transmitter of linki suppresses interference on the re-
ceiver of link j and letat

i j = 0, otherwise. Furthermore, let
at

ii = 1, for all i. Denote byAt the matrix ofat
i j values. Sim-

ilarly, let ar
i j = 1 if the receiver of linki suppresses interfer-

ence from the transmitter of linkj, letar
i j = 0, otherwise, and

let ar
ii = 1, for all i. Denote byAr the matrix ofar

i j values.
The feasibility problem is defined as follows:

Input: A setL = {(t1, r1), . . . ,(tm, rm)} of links, a stream al-
location vectorS for L, and a conflict graphGc = (L,Ec).

Output: True if SandL are feasible andFalse otherwise.S
andL are defined to be feasible ifL is free of primary inter-
ference and there existAt andAr such that:

1. AtS≤ Kt ,
2. ArS≤ Kr , and
3. for all i 6= j such that(l i , l j) ∈ Ec, at

i j +ar
ji ≥ 1.

Conditions 1 and 2 ensure that a node does not use more
DOFs than it has available. For eachti , we have that:

si + ∑
j: j 6=i and(l i ,l j )∈Ec

at
i j sj ≤ kt

i

In other words,ti usessi DOFs for spatially multiplexing its
streams and usessj DOFs for every receiver on which it sup-
presses its interference, and the total of these values cannot
exceed the size ofti ’s antenna array. Condition 1 states this
inequality in matrix form over all transmitters and Condition
2 is the equivalent for receivers. Condition 3 ensures that all
interference is cancelled, i.e. for every pair of linksi and
j wherei interferes with j, either the transmitter ofi or the
receiver ofj (or both) suppresses the interference fromi to j.

Note that the cases of receiver-side suppression only and
transmitter-side suppression only can easily be handled by
this general problem statement. For receiver-side suppres-
sion only,at

i j is set to zero for alli 6= j, and for transmitter-
side suppression only,ar

i j is set to zero for alli 6= j.
Note also that Conditions 1 and 2 above are a variation of

the basic DOF inequality in which a set of boolean variables,
theat

i j ’s and thear
i j ’s, are included. These boolean variables

indicate which nodes are suppressing interference on which
other nodes. Thus, one way of stating the feasibility prob-
lem is to ask the question: “Does there exist an assignment
of interference suppressions to nodes (at

i j andar
i j values) that

satisfy the DOF inequalities at every node and together sup-
press all interference?”. This formulation makes it clear that
the feasibility problem is a special type of Boolean satisfia-
bility problem.



4.2 Stream Allocation

The achievable rateR(ti , r i ,ADOFti ,ADOFr i ) on a link de-
pends on the numbers of available degrees of freedom
(DOFs) at both ends of the link. The number of available
DOFs atti is given bykt

i − ksti , whereksti denotes the num-
ber of DOFs thatti uses to suppress its streams on receivers
other thanr i . Note thatksti = ∑i 6= j a

t
i j sj , i.e. ksti is the sum

of the numbers of streams received by all receivers on which
ti suppresses its interference. Similarly, the number of avail-
able DOFs atr i is given bykr

i −ksr i , whereksr i = ∑i 6= j a
r
i j sj .

The stream allocation problem, formally defined below,
is to find an optimal stream vector, given a set of links that
could be scheduled concurrently. An optimal stream vector
is defined as a feasible stream vector with maximum aggre-
gate transmission rate. Links that could be scheduled concur-
rently means that the links are free of primary interference.

Input: A set L = {(t1, r1), . . . ,(tm, rm)} of primary-
interference-free links, DOF vectorsKt and Kr , and rate
functionR(ti , r i ,ADOFti ,ADOFr i ).

Output: A stream allocation vectorSand matricesAt andAr

that makeS feasible, where(S,At ,Ar) has maximum aggre-
gate rate over all feasible stream vectors.

4.3 One-Shot Link/Stream Scheduling

In the stream allocation problem, a set of primary-
interference-free links is given. However, in classical one-
shot link scheduling, the problem is to determine which links,
when scheduled together concurrently, will maximize the ag-
gregate rate. In other words, this is a version of link schedul-
ing in which the goal is to squeeze as much out of a sin-
gle scheduling slot as possible. Repeatedly scheduling a
maximum-rate set of links over and over will yield a max-
imum throughput solution. However, such a schedule obvi-
ously does not meet any fairness criteria and, therefore, this
approach cannot be considered a solution to an overall net-
work scheduling problem. Nevertheless, one-shot scheduling
algorithms can be adapted in various ways to address fairness
and can therefore still form a core component of an overall
scheduling approach.

We can generalize the stream allocation problem into a
one-shot scheduling problem. In this case, we simply need
to start with an arbitrary set of links (rather than being given a
primary-interference-free set of links) while maintaining the
same goal of maximizing the aggregate rate. Thus, in this
situation, the problem can be defined as follows:

Input: An arbitrary set L = {(t1, r1), . . . ,(tm, rm)} of
links, DOF vectors Kt and Kr , and rate function
R(ti , r i ,ADOFti ,ADOFr i ).

Output: A set of primary-interference-free linksLpi f , a
stream assignment vectorS for Lpi f , and matricesAt and
Ar that makeSfeasible, where(Lpi f ,S,At ,Ar) has maximum
aggregate rate over all sets of primary-interference-freelinks
and feasible stream vectors.

5. RESULTS ON FEASIBILITY

5.1 Complexity of MIMO Feasibility

In this section, we study the complexity of checking the fea-
sibility of a stream allocation vector in a MIMO network. As

is made clear in the formal problem definition given in Sec-
tion 4.1, feasibility is a special type of Boolean satisfiability
problem. It is well known that many variations of Boolean
satisfiability are NP-complete. Due to the specialized con-
straints in the MIMO feasibility problem, it is unlikely that
a proof of NP-completeness will be found, but we conjec-
ture that MIMO feasibility is NP-complete. However, certain
special cases of the feasibility problem are solvable in poly-
nomial time and we provide proofs of this for several cases
in this section.

The fact that feasibility can no longer be trivially solved
with MIMO links could have important implications for
scheduling algorithms. As mentioned earlier, many greedy
scheduling algorithms attempt to assign links to the first slot
in which they are feasible. This common approach assumes
that feasibility can be efficiently tested, so that repeatedex-
ecution of feasibility checks does not negatively impact the
execution time of the scheduling algorithm. Since this as-
sumption is not valid for the general MIMO link scheduling
case, alternative approaches to building schedules might have
to be developed. For example, approaches that build sched-
ules, which are provably feasible by the manner in which
they are constructed and thus do not have to employ feasibil-
ity tests, could be preferable.

When CSI is available only at the receivers and not at the
transmitters, then only receiver side interference suppression
can be done. Theorem 1 states that, in this special case, the
feasibility problem is polynomial time in complexity.

Theorem 1 Checking feasibility of a stream allocation vec-
tor S and a link set L over an arbitrary MIMO network with
receiver-side-suppression only can be done in polynomial
time.

Proof: Let S= [s1, . . . ,sm] and recall thatsi > 0, for all
i (otherwise, we can simply remove linki from L and con-
sider feasibility of the smaller vector and link set). Denote
the conflict graph of the network byGc = (L,Ec). Note
that Condition 3 of feasibility (see Section 4.1) says that
for all distinct links i and j that conflict with each other, ei-
therat

i j = 1 (meaningti suppresses its interference onr j ) or
ar

ji = 1 (meaningr j suppresses interference fromt j ). Since
only receiver-side suppression is done in this case,at

i j = 0
and in order to satisfy Condition 3, it is required thatar

ji =
1. Thus, every receiver must necessarily suppress interfer-
ence from every transmitter whose link conflicts with the re-
ceiver’s link.

Checking feasibility amounts to checking whether all of
the conditions from the feasibility problem definition are
true. In light of the fact thatAt = 0 with receiver-side-
suppression only, the following procedure suffices to check
feasibility.

Step 1:Check thatL is primary-interference-free. This can
be done by simply scanning through all links and counting
the number of occurrences of every node. If any node ap-
pears more than once,L is not primary-interference-free and
SandL are not feasible. If all nodes appear at most once in
L, then continue to Step 2.

Step 2:Check whether there existAt andAr that satisfy Con-
ditions 1-3 of feasibility. From the above discussionAt is the
matrix of all zeroes and therefore Condition 1 (AtS≤ Kt ) is
trivially satisfied. SinceAt is all zeroes,Ar is therefore fixed



by Condition 3. Therefore, it is only necessary to check that
Condition 2 is satisfied for every link. In the case under con-
sideration, for a given receiverr i , Condition 2 becomes:

si + ∑
j: j 6=i and(l i ,l j )∈Ec

sj ≤ kr
i

Since allsi ’s are given by the input stream allocation vector
S, checking this condition amounts to simply checking the
above inequality for every receiver. This can be easily done
in O(l2) time.

The essence of what makes feasibility polynomial time in
the special case of receiver-side-suppression only is thatthe
choice of how to suppress interference (either by the trans-
mitter of the interfering link or by the receiver of the inter-
fered with link) is removed. In the general MIMO case, for
every pair of interfering links, there is a choice as to how
to suppress the interference, and combining these choices
over all pairs of interfering links yields an enormous num-
ber of possibilities that are all potential ways to make a
stream allocation vector feasible. The case of transmitter-
side-suppression only also removes the choice of how to sup-
press interference and, therefore, it has the same effect on
problem complexity, i.e. feasibility for the transmitter-side-
suppression only case is also of polynomial complexity.

Another interesting special case is when the DOFs of
all nodes are small. In particular, when every node in the
network hask = 2 DOFs, even when interference suppres-
sion can be done atboth transmitter side and receiver side,
then the feasibility problem is polynomial time in complex-
ity. This result is stated in Theorem 2.

Theorem 2 Checking the feasibility of a stream allocation
vector S and a link set L over an arbitrary MIMO network
where every node has k= 2 degrees of freedom is a polyno-
mial time operation.

Proof: The proof is constructive, i.e., we describe a poly-
nomial time algorithm that, given inputsS and L, returns
True if and only if stream allocation vectorS is feasible for
link setL. The algorithm first checks whetherL is primary-
interference-free in polynomial time (as in the proof of The-
orem 1). IfL is not primary-interference-free, the algorithm
returnsFalse, otherwise it continues with the procedure de-
scribed next.

Let the conflict graph of the MIMO network beGc =
(L,Ec). Every active link l i carries a number of streams
si = {1,2}. Inactive links (with zero streams allocated) are
not represented inGc. Let L2 = {l i ∈ L : si = 2}. Since each
link in L2 utilizes its full multiplexing capacity, no resources
for interference suppression are available. The remaining
links are contained in the setL1 = L\L2, composed of links
carrying a single stream.

The feasibility algorithm first checks whether all links of
L2 are isolated vertices inGc. If not, the algorithm returns
False, otherwise, it considers the subgraphG1 of Gc induced
by node setL1. Let G1, . . . ,Gh be the connected components
of graphG1. The algorithm checks whether for eachGi =
(Li ,Ei), inequality|Ei | ≤ |Li | is satisfied; if the inequality is
not satisfied for any of theGi , the algorithm returnsFalse,
otherwise it returnsTrue and terminates.

It is immediate to see that the above algorithm has poly-
nomial time complexity. We now prove that, when the algo-
rithm returnsFalse on inputS, L, stream allocation vectorS
is infeasible forL. To prove this, we observe that the algo-
rithm returnsFalse if only if one of the following conditions
hold:
1) setL is not primary-interference-free; in this case, it is

clear that any non-zero stream allocation vectorSfor L is
infeasible.

2) L2 contains at least one link, which is not an isolated ver-
tex in Gc; denote such a link byl i and suppose it is adja-
cent to link l j in the conflict graph. Sincel i carries two
streams, it has no DOFs available for suppression. Linkl j
carries at least one stream and, therefore, has at most one
DOF remaining, which is not enough to suppress the two
streams onl i . Hence, condition (3) for feasibility cannot
be satisfied for linksl i , l j unless conditions (1) and (2)
are violated. This implies that stream assignmentS is not
feasible for link setL.

3) there exists a connected componentG j of graphG1 such
that |E j | > |L j |. A simple counting argument can be
used to prove thatS is not feasible forL: for each link
l ∈ L j , two DOFs are available at the link endpoints to
suppress interference (one at the transmitter and one at
the receiver side). Thus, 2|L j | DOFs in total are avail-
able to suppress interference withinG j . On the other
hand, suppressing interference between any two adjacent
links l i , l j in the conflict graph requires using 2 DOFs:
one for suppressing interference generated byti on r j ,
and one for suppressing interference generated byt j on
r i . Thus, 2|E j | DOFs in total are needed to suppress the
interference the|L j | links in G j cause to each other re-
ceivers. Hence,|E j | > |L j | implies that not enough radio
resources (DOFs) are available withinG j to completely
suppress interference, which proves that stream alloca-
tion vectorS is infeasible forL.

The next step is to prove that whenever none of conditions
1),2),3) hold on given inputS,L, then stream allocation vec-
tor S is feasible forL, which implies correctness of our fea-
sibility checking algorithm (which returnsTrue in this sit-
uation). We prove this last step by showing a construction
(DOF assignment) that makesS feasible forL subject to the
fact that none of the conditions 1),2),3) are satisfied.

If condition 3) is not satisfied, we have|L j | ≤ |E j | for
each connected componentG j of G1. We first observe that
DOF assignments for theG js can be built independently,
since links in differentG1 connected components do not in-
terfere with each other. We hence show the construction for
a singleG j , making the overall construction the result of the
composition of DOF assignments for the single connected
components. It is not difficult to see that the topology ofG j

can take only one of the four following forms:a) single ver-
tex; b) tree;c) simple cycle;d) connected graph containing
a single simple cycle. IfG j is of typea), no DOF has to be
allocated for interference suppression. IfG j is a tree (type
b)), perform the following procedure:

1. Designate some vertex inL j to be the root.
2. For every edge(l i , lk) ∈ E j , use the two available DOFs

of the link deeper in the tree (say,lk) to suppress mutual
interference betweenl i andlk.

It is easy to see that, since every vertex in a tree (except the



root) has a single parent, each link in the above construc-
tion uses at most 2 DOFs to suppress interference, thus not
exceeding the available DOFs. On the other hand, mutual
interference between all links inG j is taken care of at the
end of the above procedure, implying that the resulting DOF
assignment makesS feasible (when restricted toG j ).
Let us now consider casec). In this case, it is sufficient
to give either clock-wise or counterclock-wise orientation to
the edges inE j , and to choose an arbitrary vertexl i in L j .
Consider any two adjacent verticesls, lt in G j , and assume
w.l.o.g. thatls precedeslt in the chosen orientation, starting
form l i . Then, the two DOFs available atls are used to sup-
press mutual interference betweenls andlt . It is easy to see
that, similarly to what happens in caseb), this construction
results in a feasible DOF assignment forS (when restricted
to G j ).
Finally, consider cased). In this case, we start by designat-
ing every vertex inL j that is contained in the simple cycle
and is of degree equal to 3 as the root of the tree component
it belongs to. DOFs are then assigned by combining the con-
struction for caseb) within the trees, with construction for
casec) along the single simple cycle contained inG j . Note
that the resulting construction is feasible since root vertices
in constructionb) do not use their available DOFs to sup-
press interference with other links in the tree; hence, these
available DOFs can be used to suppress interference with the
successive vertex (link) in the simple cycle as described in
the construction for casec). Thus, the resulting DOF as-
signment makesS feasible (when restricted toG j ), and the
theorem is proved.

5.2 Feasibility Heuristics

Given that the general MIMO feasibility problem is quite
possibly NP-complete, heuristics for checking feasibility are
necessary. Perhaps the most obvious heuristic is to see
whether all interference can be suppressed by greedily al-
locating DOFs for interference suppression. The algorithm
works as follows. Sort the links in order of non-increasing
number of allocated streams. Begin with the first link and use
its DOFs to suppress interference on the links with which it
interferes one by one until all its DOFs are used. Then, move
onto the next link and continue until all interference is sup-
pressed or all DOFs are used up, whichever comes first. If all
interference can be removed with the available DOFs in the
network, the allocation vector is declared to be feasible. We
refer to this approach as Algorithm Simple Greedy.

In experimenting with Algorithm Simple Greedy, we
found that it tends to concentrate DOFs among small groups
of nodes, rather than more evenly distributing those resources
across links in the network, and this causes it to frequently
label feasible vectors as infeasible. To remedy this problem,
we developed the algorithm in Figure 1, which we refer to
as Algorithm Extended Greedy. This algorithm, when con-
sidering multiple candidate links, all carrying equal number
of streams, on which to suppress interference, chooses a tar-
get link uniformly at random from the candidates. This tends
to produce a better distribution of resources and outperforms
Algorithm Simple Greedy. In Figure 1, note that the standard
notation< V,W > is used to represent the inner product of
vectorsV andW and thatI is the identity matrix.

Both Algorithm Simple Greedy and Algorithm Extended
Greedy are safe, in the sense that they always label infeasible

Input: Stream allocation vectorS, link setL, Kt , Kr , conflict
graphGc = (Vc,Ec)
Output: feasible∈ {true, false}, At , Ar

1: OrderS in non-increasing fashion
2: At = Ar = I|L|×|L|
3: for i = 1→ |L|
4: if < At(i,1 : i),S1:i > ≤ Kt

i , distribute 1′s in At(i,Gc(i, i +1 :
l)) greedily, giving equal priority to columns of equal weight
such that< At

i ,S> ≤ Kt
i

5: if < Ar(i,1 : i),S1:i > ≤ Kr
i , distribute 1′s in Ar(i,Gc(i, i +1 :

l)) greedily, giving equal priority to columns of equal weight
such that< Ar

i ,S> ≤ Kr
i

6: Ar(m, i) = 1−At(i,m) andAt(m, i) = 1−Ar(i,m) ∀m≥ i +
1 : (i,m) ∈ Ec

7: end for
8: feasible = true ifAtS≤ Kt andArS≤ Kr , else feasible = false

Figure 1: Algorithm Extended Greedy

vectors as infeasible. However, they are both non-optimal in
that they each label some feasible vectors as infeasible. The
accuracy of the two heuristics is evaluated in Section 5.3, in
terms of the percentage of feasible vectors that are labeled
infeasible.

5.3 Accuracy of Feasibility Heuristics

The scalability of the heuristics for verifying feasibility of a
stream allocation vector in a MIMO network is studied ex-
perimentally by calculating the entire feasible space for val-
ues ofKt = Kr = K = 8,12,16 and network sizes up to 15
links. The results are shown in the graph of Figure 2. Note
that the Extended Greedy heuristic is significantly more ac-
curate than Simple Greedy. Extended Greedy is inaccurate at
most 5% of the time withk = 8 andk = 12 and at most 10%
of the time withk = 16, for the network sizes studied here.

We have also developed a more accurate feasibility
heuristic based on a sum-product algorithm. However, the
feasibility heuristics are not the main emphasis of this paper.
Rather, we are interested in applying the heuristics withinan
overall one-shot link scheduling approach. Since, over the
range of network sizes studied in Section 7.2, the better ac-
curacy of the sum-product algorithm does not have a substan-
tial impact on the overall results, we choose not to take the
extra space to describe and evaluate this additional heuristic
herein.

6. STREAM ALLOCATION AND ONE-SHOT
SCHEDULING ALGORITHMS

Consider the general one-shot link scheduling problem of
maximizing the aggregate throughput over an arbitrary set of
links (that are not necessarily primary-interference-free). We
approach the problem by splitting it into two subproblems.
In the first problem (stream allocation), an algorithm deter-
mines a stream allocation vector that approximately maxi-
mizes the throughput, given a set of primary-interference-
free links. The second problem considers how to select a
“good” set of primary-interference-free links to provide as
input to the stream allocation algorithm. When solving the
overall one-shot link scheduling problem, we first run the
primary-interference-free link selection algorithm, then run
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Figure 2: Failure Rates of Simple Greedy and Extended
Greedy Heuristics

the stream allocation algorithm using the output of the link
selection algorithm.

6.1 Stream Allocation Algorithms

A simple heuristic for the stream allocation problem, which
we will use as a baseline for comparison, is to adopt a greedy
approach. Streams are scheduled successively from highest
to lowest rate and the allocation vector is tested for feasibility
at each step. We refer to this as the “upward construction”
approach, because it simply keeps adding streams in a greedy
fashion until no more streams can be added without making
the allocation vector infeasible.

We now present an algorithm that provides a better ap-
proximation to the stream allocation problem (compared to
the simple upward construction approach). For a given set of
primary-interference-free links, the value of the stream allo-
cation vectorS is initialized so as to maximize the aggregate
throughput while satisfying the following two constraints:
(1) interference between every pair of links is suppressed
and (2) weight of the stream allocation vector is bounded
by

⌊

2kl
l+1

⌋

, wherel is the number of non-zero entries in the
vector andk is the median value of the vector resulting from
taking the minimum of the elements ofKt and Kr .3 Note
that, since the initialization only checks pairwise interfer-
ence between links, the initial vector might not be feasible.
However, since all pairwise interference constraints can be
checked in polynomial time, this produces an initial vector
with high throughput that provides a minimum level of inter-
ference suppression. Pseudo-code is shown for the initializa-
tion procedure in Figure 3.

Once an inital stream allocation vector is determined, it is
tested for feasibility using any feasibility checking algorithm
(in the description presented herein, we assume the Extended
Greedy heuristic of Section 5).4 If the initial vector is feasi-
ble, then it becomes the the final output of the algorithm. In
most cases, the initial stream allocation vector will not be
feasible and the algorithm will then adjust it to try to make
it feasible. This is done by removing streams from the ini-
tial vector until it becomes “more feasible” and then tryingto

3If Kt
i = Kr

i = k,∀i, then
⌊ 2kl

l+1

⌋

is the maximum number of streams [13].
4Since we assume single collision domain networks in this part,we omit

the conflict graph input to Extended Greedy.

1: Let S0 = [0, . . . ,0]|L|
2: repeat
3: add the highest rate stream not already inS0 that maintains the

following condition: ∀l i , l j ∈ L, at least one of the following
holds:s0

i +s0
j ≤ min(Kt

i ,K
r
i ); s0

i +s0
j ≤ min(Kt

j ,K
r
j ); s0

i +s0
j ≤

min(Kt
i ,K

r
j ); s0

i +s0
j ≤ min(Kt

j ,K
r
i )

4: until
|L|

∑
i=1

s0
i =

⌊

2kl
l+1

⌋

, wherel = no. of non-zero entries inS0

andk = median of min(Kt ,Kr)

Figure 3: Initialization Procedure for Algorithm
StreamMaxRate

Input: Primary-interference-free link setL, Kt , Kr ,
R(ti , r i ,ADOFti ,ADOFri )
Output: Feasible stream allocation vectorS for L, At andAr

that makeS feasible

1: Initialization: ChooseS0 to satisfy pairwise interference con-
straints and approximately maximize aggregate rate as detailed
in Figure 3

2: S= S0

3: (feasible,At , Ar ) = ExtGr(S,L,Kt ,Kr )
4: while not feasible
5: (feasible,S,At ,Ar ) = UpdateRule(S,L,Kt ,Kr ,At ,Ar )
6: end while

Figure 4: Algorithm StreamMaxRate

add more streams in where possible without reducing feasi-
bility. The stream allocation vector is adjusted by an update
rule procedure, which is guaranteed to increase the number
of rows that are feasible of the LHS in each of Conditions
1 and 2 by at least one. Thus, repeated calls to the update
rule will eventually produce a stream allocation vector that
is completely feasible. Pseudo-code is shown for the overall
StreamMaxRate algorithm in Figure 4 and for the allocation
vector updating procedure in Figure 5.

6.2 One-Shot Link Scheduling Algorithms

As mentioned earlier, our approach to one-shot link schedul-
ing is to first pick a “good” set of primary-interference-free
links and then apply Algorithm StreamMaxRate to optimize
stream allocation among those links. Any set of links mak-
ing up a matching of the communication graph is primary-
interference-free and is therefore an eligible candidate for the
input to Algorithm StreamMaxRate. Clearly, the optimal so-
lution will use a set of links corresponding to some maximal
matching.

We consider two different primary-interference-free link
selection heuristics, based on weighted matching algorithms:
1. The weight of each link is set equal to the inverse of the

physical distance between the transmitter and receiver of
that link, i.e.wi =

1
di

. Here, we find amaximumweighted
matching using the algorithm of [11].

2. The weight of each link is set equal to the physical dis-
tance between the transmitter and receiver of that link,
i.e. wi = di . We consider maximal matchings with at least
a given number of links. From among these candidates,
we choose the matching with minimum total weight.



Input: Stream allocation vectorS, link setL, Kt , Kr , At , Ar

Output: feasible∈ {true, false}, updated stream allocation vec-
tor S, At , Ar

1: nfr0 = min(nfrt ,nfrr ), where nfrt and nfrr are the number of
feasible rows inAt and the number of feasible rows inAr , with
respect toS

2: repeat
3: remove the lowest rate stream fromS
4: until min(nfrt ,nfrr ) > nfr0

5: nfr1 = min(nfrt ,nfrr )
6: for each streamsi not included inSfrom highest rate stream to

lowest rate stream
7: addsi to S
8: (feasible,At , Ar ) = ExtGr(S,L,Kt ,Kr )
9: calculate nfrt and nfrr from At andAr

10: if min(nfrt ,nfrr) < nfr1 then removesi from S
11: end for

Figure 5: Update Rule for Algorithm StreamMaxRate

7. RESULTS ON STREAM ALLOCATION AND
ONE-SHOT SCHEDULING

We have proposed the StreamMaxRate Heuristic for approx-
imately maximizing the throughput over a given set of links
in Section 6.1. In this section, we will define an experimental
set up and use simulation results to compare the performance
of the StreamMaxRate heuristic against the optimal through-
put. Because of the relatively small number of links that can
be active concurrently within a single collision domain, we
are able to calculate the optimal solution for a good portion
of the input parameter space considered. Additionally, we
have simulated the greedy upward construction approach of
finding a stream allocation and use this as a second compari-
son point. Finally, we show some results on the overall one-
shot link scheduling problem by including the two weighted
matching methods of selecting a set of primary-interference-
free links. Since brute-force searching the space of all pos-
sible maximal matchings is infeasible, we only compare our
approach to the greedy construction in this case.

7.1 Simulation Set-up

For all simulations, every node is equipped with an antenna
array of sizek = 8. This allows for a maximum ofl = 15
links to be active concurrently, given the single collisiondo-
main assumption. The experimental set up for the stream
allocation results is as follows. We distribute 50 nodes
(with a uniform distribution) over a field of fixed dimensions.
All nodes are within interference range of each other. We
select 50 randomly generated matchings (sets of primary-
interference-free links) with sizes ranging from two to fif-
teen. This is averaged by repeating the procedure over a sam-
ple space of node distributions. For different matching sizes,
we compute (a) the optimal throughput (b) the throughput re-
sulting from application of the StreamMaxRate heuristic and
(c) the throughput obtained by applying the greedy upward
construction procedure.

The set-up for the one-shot link scheduling results is as
follows. We distribute (uniformly) an even number of nodes,
ranging fromN = 2 to N = 30 over a field of fixed dimen-
sions. For each value ofN, we select a maximal matching
(of sizeN/2, since all nodes are within transmission range
of each other). We do this by the two weighted matching
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Figure 6: Throughput vs number of nodes for randomly
selected matchings

procedures described in Section 6.2. We combine these two
matching selection procedures with the two stream allocation
heuristics (StreamMaxRate and greedy) to produce four dif-
ferent curves. For each data point on a curve, an average was
obtained by repeating the process over a large sample space
of node distributions.

For all simulations, the channel was modeled as an ideal-
ized rich scattering static environment, which corresponds to
a quasi-static flat Rayleigh fading channel model. Therefore,
the channel has i.i.d. complex, zero mean, unit variance ele-
ments as described by [7]. The gain of each channel matrix
was calculated using Friis transmission equation and the log-
distance path-loss model with a path-loss exponent of 3 [10].
We assume channel state information is available to the trans-
mitters and therefore include optimal power allocation in our
rate calculations. The data rate is calculated from Shannon’s
capacity formula using the optimal power allocation [8].

7.2 Simulation Results

Figure 6 shows the results for the stream allocation problem
alone. Due to the large computation time of determining
the optimal value of the throughput for larger numbers of
nodes and links, the optimal result is shown only up to 20
nodes, which corresponds to 10 links. Note that atn = 20,
the throughput from StreamMaxRate is within 7% of the op-
timal. The greedy upward construction approach is within
15% of the optimal at this point. Thus, StreamMaxRate cuts
the difference between the heuristic and the optimal in halfat
this point. Note also that the difference between the greedy
heuristic and StreamMaxRate increases with network size.
Extrapolating the optimal curve in a natural way would indi-
cate that the halving of the difference from optimal produced
by StreamMaxRate should continue over the range of net-
work sizes simulated.

We now present results for one-shot link scheduling. In
this case, we have the two weighted matching methods for
selecting the set of primary-interference-free links and we
evaluate those using both Algorithm StreamMaxRate and
the greedy construction method for stream allocation. The
results are shown in Figure 7. For both methods of find-
ing matchings, StreamMaxRate retains its performance ad-
vantage compared to the greedy stream allocation heuris-
tic (about 10-15% higher throughput for the largest network
size simulated). We also find that the matching selection
approach that finds the maximum weighted matching with
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Figure 7: Throughput vs number of active links for two
different methods of selecting matchings

links weighted by the inverse of their distances outperforms
the one that finds the minimum weighted matching with
weights equal to the distances. The difference between the
two matching selection approaches is only moderate, how-
ever, being about 5% for the largest network size.

Note that, for one-shot link scheduling, we cannot com-
pare against the overall optimal solution, since checking all
maximal matchings is not feasible for the network sizes con-
sidered. However, given the result of the maximum matching
heuristic, we can find the optimal allocation (as we did for the
stream allocation problem results). We did this comparison
and found that StreamMaxRate was within 6% of optimal for
these specific matchings (essentially the same as its perfor-
mance on random matchings described earlier).
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