An Attribute-based Authorization Policy Framework
with Dynamic Conflict Resolution

Apurva Mohan

School of Electrical and Computer Engineering

Georgia institute of Technology
Atlanta, GA, USA
apurva@gatech.edu

ABSTRACT

Policy-based authorization systems are becoming more com-
mon as information systems become larger and more com-
plex. In these systems, to authorize a requester to access
a particular resource, the authorization system must verify
that the policy authorizes the access. The overall authoriza-
tion policy may consist of a number of policy groups, where
each group consists of policies defined by different entities.
Each policy contains a number of authorization rules. The
access request is evaluated against these policies, which may
produce conflicting authorization decisions. To resolve these
conflicts and to reach a unique decision for the access request
at the rule and policy level, rule and policy combination al-
gorithms are used. In the current systems, these rule and
policy combination algorithms are defined on a static basis
during policy composition, which is not desirable in dynamic
systems with fast changing environments.

In this paper, we motivate the need for changing the rule
and policy combination algorithms dynamically based on
contextual information. We propose a framework that sup-
ports this functionality and also eliminates the need to re-
compose policies if the owner decides to change the combi-
nation algorithm. It provides a novel method to dynamically
add and remove specialized policies, while retaining the clar-
ity and modularity in the policies. The proposed framework
also provides a mechanism to reduce the set of potential
target matches, thereby increasing the efficiency of the eval-
uation mechanism. We developed a prototype system to
demonstrate the usefulness of this framework by extending
some basic capabilities of the XACML policy language. We
implemented these enhancements by adding two specialized
modules and several new combination algorithms to the Sun
XACML engine.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and protection; D.4.6 [Operating Sys-
tems]: Security and protection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IDtrust ’10 April 13-15, 2010, Gaithersburg, MD

Copyright 2010 ACM ISBN 978-1-60558-895-7/10/04 ...$10.00.

Douglas M. Blough
School of Electrical and Computer Engineering
Georgia institute of Technology
Atlanta, GA, USA
doug.blough@ece.gatech.edu

General Terms

Security, Languages, Performance

Keywords

Attribute-based authorization, authorization policy, conflict
resolution

1. INTRODUCTION

As information systems become more complex and dis-
tributed in nature, system administrators and users need
authorization systems which can help them share their re-
sources, data and applications with a large number of users
without compromising security and privacy. Although tra-
ditional authorization systems address the basic problem of
granting access to only authorized individuals, they do not
provide a number of desired features of modern authoriza-
tion systems. These include 1) easily changing authorization
based on accessor roles, group memberships, institutional af-
filiations, location etc., 2) multiple authorities jointly mak-
ing authorization decision, 3) dynamically changing autho-
rization based on accessor attributes, and 4) GUI-based gen-
eral purpose tools for description and management of autho-
rization rules. Some traditional authorization systems pro-
vide some of these functions on an ad-hoc basis. Although
policies have always been part of authorization systems, they
were mostly buried in other functional code and hence were
difficult to compose and analyze.

Modern policy-based authorization systems provide most
of these features. They have a separate policy module that
can be queried to make authorization decisions. This mod-
ule makes decisions taking into consideration all applicable
policies for a particular access request. These policies may
be defined by multiple authorities. The policies may have
different or even conflicting authorization decisions for the
same access request. Policy languages use policy combi-
nation algorithms (PCA) to resolve such conflicts. These
algorithms take the authorization decision from each policy
as input and apply some standard logic to come up with a
final decision®.

These PCAs are currently chosen at the time of policy
composition and hence they are static. In highly dynamic
environments, this is not desirable and there may be a need
to select these PCAs dynamically. In this case, it will be
useful to have a mechanism to select a suitable PCA based

'For efficiency reasons, policy engines only evaluate policies
until they reach a final decision based on the combination
algorithm.

on the dynamic contextual information available to the sys-
tem. More discussion on this issue along with a motivating
scenario is presented in Section 3.

PCAs used in current systems are also very restricted.
There are a number of conflict resolution logics in general
purpose computing which are not expressible as PCAs in
authorization languages. Examples of these logics include
hierarchy-based resolution, priority-based resolution, taking
a simple majority vote, and taking a weighted majority vote.
There is a need to include algorithms such as these as PCAs
in authorization languages to provide more functionality and
flexibility in defining policies.

Having a context-aware authorization system also pro-
vides the capability to define different policies for different
contexts. These contexts can be distinguished by contex-
tual data or environmental attributes. In this case, the poli-
cies will be modular making them easy to comprehend and
analyze. Without the ability to choose the applicable poli-
cies based on contextual information, the policy composer is
forced to duplicate each access control rule with and with-
out the contextual information in the same policy. Although
the same access control decision can be achieved in both ap-
proaches, the latter makes it difficult to analyze the policies
and the effect of making changes to them. Also if policies
are chosen dynamically, only a small set of rules will be eval-
uated for their applicability for this request. This reduces
the number of matches with potential policy targets thereby
lowering computation time.

Another advantage of using context-aware authorization
is that a specialized policy created for some specific purpose
can be added and removed from consideration dynamically
without changing the existing policies. This is especially
useful for systems that have to adhere to certain temporary
authorization requirements which require special authoriza-
tion rules. This is also useful in cases where the specialized
policy is composed by some entity other than the one who
usually creates and maintains authorization policies.

The main contributions of this paper are: 1) proposing
a framework where authorization for a particular access re-
quest is decided dynamically based on context information,
2) supporting dynamic conflict resolution where PCAs are
chosen at run time based on context information, 3) provid-
ing the ability to dynamically include (remove) specialized,
short-term or add-on policies to (from) the authorization
policy set, 4) increasing the efficiency of policy target match-
ing during authorization, 5) increasing the modularity and
clarity of the policies, 6) building a prototype authorization
system to demonstrate the concepts, and 7) evaluating effi-
ciency of the policy evaluation for the proposed framework.

2. ATTRIBUTE-BASED AUTHORIZATION
SYSTEMS

In this section, we first introduce the basic constructs of
attribute-based policy languages. We then describe some ba-
sic concepts of attribute-based authorization systems, define
attribute-based policies, and policy combination algorithms
used in conflict resolution.

2.1 Brief Introduction to Policy Languages

In this sub-section, we introduce the basic elements of
attribute-based authorization policy languages. Although
here we use eXtensible Access Control Markup Language

(XACML) as an example to introduce the primary elements,
these elements are similar in other policy languages as well.

XACML is an OASIS standard that describes a policy
language for representing authorization policies and an ac-
cess control decision request/response language [2]. XACML
is based on XML. It describes general access control re-
quirements while allowing for extensions for defining new
functions, data types and combination logics. The language
has syntax for defining authorization policies and building a
request/response to validate authorization requests against
the policies. The response contains one of the four possible
outcomes of policy evaluation - Permit, Deny, Indeterminate
(an error occurred or some required value was missing, so
a decision cannot be made) or Not Applicable (the request
can’t be answered by this service).

XACML has a Policy Enforcement Point (PEP) that actu-
ally protects the resource and a Policy Decision Point (PDP)
that evaluates the access request against the policies. The
PEP receives the access request from the requesting user
and forwards it to the PDP which makes the decision in
consultation with the policies. If the access is allowed, the
PEP release the resource to the requesting user. The main
components of a XACML policy are described below:

Policy - An XACML policy contains a set of rules with
the subject and environment attributes, resources and cor-
responding actions. If multiple rules are applicable to a par-
ticular request, then the rule combination algorithm (RCA)
combines the rules and resoles any conflict in their decisions.
XACML supports the following RCA’s - Deny-overrides (Or-
dered and Unordered),Permit-overrides (Ordered and Un-
ordered), and First-applicable.

Policy Set - A policy set is a container which contains
other policies or policy set. One or more of these poli-
cies or policy sets may be applicable to a particular ac-
cess request. If more than one are applicable, then the
Policy Combination Algorithms (PCA) are used to com-
bine the policies and resolve any conflicts in their decisions.
XACML supports the following PCA’s - Deny-overrides (Or-
dered and Unordered),Permit-overrides (Ordered and Un-
ordered), First-applicable, and Only-one-applicable.

Target - A Target is basically a set of conditions for the
Subject, Resource and Action that must be met for a Policy
Set, Policy or Rule to apply to a given request.

Rule - The rule is the core representation of the access
control logic with the subject, resource, action and environ-
ment fields. It is a boolean function, which evaluates to true
if the subject, resource, action and environment fields in the
request matches with the fields in the rule.

2.2 Authorization Policy

In an attribute-based system, objects are protected by ad-
ministrator (or object owner) defined policies. These poli-
cies define a set of verifiable attributes (with pre-defined
values) against each resource for a set of privileges. These
attributes are either the characteristics of the user or the
environment. These attributes must be presented to the au-
thorization module and verified by it in order to authorize
the accessing user to access the requested object with spe-
cific privileges. Since the attributes have to be verifiable,
they have to be certified by some entity which is trusted by
the authorization module.

An attribute-based authorization policy is formally de-
fined below.

Definition 1 : Let SA, RA and £A represent the Subject,
Resource and Environmental attributes respectively, each
of which is well defined set of finite cardinality, given as
SA = {sa1, sas......... sar}, RA = {rai,ras......... ram} and
EA ={eai,eas......... ean}. These attributes can take values
val_sa; C dom(sa;)(1 < i < 1), val_ra; C dom(ra;)(1 < j <
m) and val_ear, C dom(ear)(l < k < n).

Attributes can be of two types, one which can take dis-
tinct and unconnected values (for e.g. ‘role’=‘doctor’ or
‘role’=‘nurse’) and another type which can take a single or
range of values (for e.g. ‘time’ is between t1 and ¢z or ‘age’
< 21). In the latter case, the values that an attribute can
take are connected. Without loss of generality, we define
the latter group as attributes which can take either a single
value or a range of values. For example, for a range of saj,
the domain and values are defined as follows:

Attribute Type 1 -

dom(saj) = [saj—vali, saj_vals...saj_valy], val_sa; € dom(sa;);

Attribute Type 2 -

dom(sa;) = [low, high], val_sa; = [low’, high'] C dom(sa;);
where, (low’ > low) and (high' < high). If val_sa; takes a
distinct value in [low, high], then low’ = high'.

Definition 2 : Let Action define a set of actions which a

subject can execute on resources. ACT = {act1, acts......... actp}.

For example, the set of actions on a file can be {read, write,
delete, append, execute}. Let D be the set of decisions that
can result as a response to a predicate evaluating to true.
D ={di,ds......... dq}.

Definition 3 : An access request (AR) is a tuple of the
form < s,7,a > , where s C {SA,EA}, r C {RA} and
a C {ACT}. It represents that s is requesting to access r
with rights a. A Rule R has the same format but defines
the set s required to access r with rights a.

Definition 4 : A policy is a list of rules given as P = (@, <
@ is a combination function, which
combines the rules to produce a single decision for the policy.
Definition 5 : A Policy Set (PS) is a container which con-
tains a list of policies. It may also contain other policy sets.
It is given as PS = (0, < PS1,PS2,...PS; >). Each PS;
represents either a policy set or a single policy?. @ is a com-
bination function, which combines all the policy sets. This
combination function is used to combine policies and policy
sets and has no direct relation with the rule combination
algorithm.

Conceptually, a policy is a deliberate plan to implement
authorization to a particular resource or group of resources.
A rule is a component of the policy that defines a specific
authorization predicate. A policy set is a container that con-
tains a number of logically connected policies. In a multi-
authority setting where the authorization policies for a par-
ticular resource are defined by a number of entities, all poli-
cies for that particular resource will form a logical policy set.
For example, at a university, the firewall policies to protect
a lab computer may be a combination of the policy defined
centrally by the office of information technology, a specific
department policy, a lab firewall policy, and the administra-
tor defined policy for that computer. A policy set encom-
passes all of these policies. The policies can be defined in a
number of policy description languages. Each has its advan-
tages and disadvantages. In describing the policies in this
paper, we will use the syntax and structure of XACML [2],

2In which case the set has a single policy and no PCA.

which is an OASIS standard. XACML is an attribute-based
policy description language and is used for implementing our
prototype system. Although we use XACML for discussion
and implementation, the model we present in this paper is
generic and can be implemented in other policy languages
like P3P [4] or EPAL [1].

2.3 Combination Algorithms and Conflict Res-
olution

In a large system, there may be multiple authorities who

specify the authorization policies. As such, there can be mul-
tiple groups of policies. When a request is evaluated in the
system, the authorization module determines which policy
sets apply to the particular request. Then it checks which
policies among those groups and which rules among those
policies are applicable to the request. There can be multiple
policy sets and multiple policies in each set applicable to a
single access request. Even within each policy there can be
multiple rules which apply to the access request. These rules
and policies can have a different or even conflicting decision
for the request. As such, a mechanism is needed to resolve
these conflicts. Policy languages have some rule combina-
tion algorithms (RCAs), which evaluate the applicable rules
based on the logic of the algorithm and resolve any conflict
in their decisions.
Definition 6 : In a single policy, £(AR,R,;) — d;, where
& represents the evaluation of the it? rule and d; is the cor-
responding decision. The set of all the decisions is given as
DRYe — (< dy,da,...,d; >). Rule Combination Algorithm
(RCA) is defined as {RCA ¢ D¢} — d, where d ¢ D. ¢
represents ‘applied to’.

For example, a policy may use ‘deny-overrides’ as its RCA.
In this case, if the algorithm finds even a single rule that
denies the access, its final decision is ‘deny’; otherwise its
decision is ‘permit’ even if a single rule permits. If none of
the rules either ‘permit’ or ‘deny’ the access, then the result
is ‘Not Applicable’.

For combining the policies and policy groups, policy lan-

guages have policy combination algorithms (PCAs). These
algorithms work on similar logic as the RCAs. Each policy
give a single decision for the access request. The PCA com-
bines these decisions into a single decision by using the PCA
logic.
Definition 7 : In the final policy list, E(AR,PS;) — d,
where & represents the evaluation of the i** policy set and
d; is the corresponding decision. The set of all the decisions
is given as DF¥ = {d;,ds,...,d,}. Policy Combination Al-
gorithm (PCA) is defined as {PCA ¢ DF°} — d, where d ¢
D.

In the current systems, these RCAs and PCAs are static
and are determined at the time of composing the policies.

3. DYNAMIC CONFLICT RESOLUTION

In the last section, we saw how RCAs and PCAs resolve
the conflicts among rules and policies to give a unique de-
cision for an access request. We also noted that, in exist-
ing systems, these RCAs and PCAs are chosen at the time
of composing the policies and hence do not change. This
static composition may not be suitable for highly dynamic
environments where there is a need to adapt the policies dy-
namically. If such a mechanism is available, then it can also
serve as an easy tool for the policy composer, if he wishes

to change the RCAs and PCAs without recomposing the
authorization policies.

Some researchers have proposed static conflict detection
and avoidance, arguing that detecting and resolving conflicts
in systems with a large number of policies in real time can
be a daunting task [26]. We argue that, even though it is
a challenging problem, it is a superior approach. Organi-
zation policies, regulatory polices, and user policies change
regularly. If we perform static conflict analysis, whenever
one of the policy changes, new conflicts can arise requir-
ing some party to change their policies. Also, some policies
that conflicted before one of the policies changed and were
never composed, may now become acceptable. There is no
mechanism to reconsider these rejected policies. Also, the
static model does not take into account adding and remov-
ing specialized and time limited policies to provide flexibility
in policy composition and maintenance.

3.1 Motivating Scenario

Let us consider a motivating scenario from the health
care domain. Alex is a patient who stores his personal
health record (PHR) with his health maintenance organi-
zation(HMO) called Superior Health Care (SHC). At SHC
the patients’ PHRs are stored in a repository where the ac-
cess to the repository is mediated through a proxy. The
proxy stores all the authorization policies. The policies may
have multiple groups with policies defined by patients like
Alex himself, the hospital which created the record, SHC’s
organizational policies, federal regulatory policies, and so
on. When someone tries to access an EMR for a particular
patient, the system will consult the applicable policies to
check whether this access is allowed. Assume that, in nor-
mal circumstances, the policy combination algorithm used
is ‘deny-overrides’, which is a secure and stringent policy.
Suppose that Alex wishes to use a more lenient policy in
case of an emergency, where he will share his PHR with any
accessor who is authorized by at least one of the applicable
policies. In this case, he needs to dynamically change his
PCA from ‘deny-overrides’ to ‘permit-overrides’ whenever
there is an emergency and back to ‘deny-overrides’ once the
emergency is over. The traditional method would require
him to change his policies twice to achieve this. If Alex want
to have several dynamic options, he will have to change his
policy description each time such a dynamic change occurs.

In the proposed model, Alex can define all such dynamic
conditions as an attribute-based policy and the evaluation
of these policies will determine what PCA will be used for
the current access request. The model extends this concept
to the selection of the RCA dynamically. It is desirable that
the user has the ability to define several dynamic conditions
simultaneously, need not change his policy descriptions ev-
ery time one such condition changes, and also need not keep
track of the dynamic changes. This is one of the key advan-
tages of using the proposed system. If Alex tries to achieve
the same effect in current policy-based systems with static
conflict analysis, when an emergency occurs he will have
to recompose his policy with ‘permit-overrides’ and resolve
all conflicts created in the process. When the emergency
is over, he will have to recompose his policies with ‘deny-
overrides’ and resolve all conflicts again. He cannot create
a special policy for an emergency, because his two policies
are inherently contradictory. This puts a heavy burden on
the user and also, by definition an emergency comes unex-

pectedly, therefore Alex cannot be expected to recompose
policies when an emergency has already occurred. In cur-
rent systems, users like Alex do not change their policies on
such events. Our novel framework enables users to achieve
this with little effort and provides an important new func-
tionality.

3.2 Proposed Model

In this section, we present a novel mechanism to dynam-
ically determine the policies applicable to an access request
and to evaluate only the applicable policies. In this model,
we evaluate the authorization policies in two stages. In the
first stage, we determine which policies are applicable to the
current access request and we also dynamically determine
which PCA will be used to resolve the conflicts in the au-
thorization decisions. In the second stage, we evaluate only
the applicable policies using the PCA selected in the first
stage.

During stage one, the total applicable policy set (TAPS) is
determined by selecting only those policies where at least one
of the authorization rules is applicable to the current access
request. If PSq, PS,...PS, are the authorization policy sets,
then the TAPS for a particular AR is given as TAPS =
@{PS1,PSs....PSy,}.

The combination algorithm @ used is ‘all-that-apply’, which
is a new rule combination algorithm defined in Appendix A.
The ‘all-that-apply’ algorithm has been implemented in our
modified XACML engine (see Section 5). To evaluate TAPS,
all available policy sets are evaluated as explained in Defini-
tion 6. If a policy set has at least one rule that applies to the
current access request, we include it in the TAPS. To find
an applicable rule, we consider the subject and environment
attributes in the access request (which is the set { EAUSA})
along with their boolean relationships. We then match that
with the rules in the policy level target. We try to find a rule
with the same set {EAU SA} with the same relationships
so that at least one of the attribute combinations matches
with those in the AR. EA, SA and RA are specified in
Definition 1.

To aid in determining applicable policy sets, we create a
meta-policy file called the M-Policy. This file contains one
rule for each authorization policy set in the system. This
rule is a copy of the policy level target rule included in each
set. This rule is a method, in a language such as XACML, to
define whether a particular policy is applicable to the given
access request and it makes the processing faster. Includ-
ing it in the M-Policy file has two advantages, namely the
processing of the M-Policy file is much faster compared to
evaluating the policy level target rule in each file. These
rules are optional in XACML. If they are not present, pol-
icy evaluation will take longer. Also, we do not use any
rule level targets in the XACML policies. As such, we com-
pare the best case performance XACML can offer with our
TAPS algorithm. The ‘all-that-apply’ algorithm makes it
possible to evaluate all target rules at the same place. Each
rule in the M-Policy is evaluated (refer to Definition 6). If
a rule evaluates to ‘permit’, it means that the target rule
representing the respective policy is true and that policy is
applicable. We then include that policy in the TAPS.

To apply the TAPS algorithm to current XACML based
systems, we can create an M-Policy file if all the XACML
policies in the target system have a policy level target and
no overriding rule level target. In systems where either there

are no policy level targets or overriding rule level targets are
present, an efficient way to implement the TAPS algorithm
is to broadly categorize the available policies and use these
categories to select the applicable policies. Although this
selection will neither be fine-grained nor accurate, it will still
improve the performance of the evaluation system because
by using TAPS we can filter out non-applicable policies at
an early stage. So, although the performance will not be
optimal in this case, it will still be better than the current
performance.

The next step in stage one is to determine the applica-
ble PCA (PCAqppiy) based on a set of environmental at-
tributes, which define the specific conditions under which
each of the PCAs is applicable. These environmental at-
tributes essentially define the context of the AR. Some of
these attributes might accompany the AR while others can
be provided by an internal or external system entity. We
assume that the dynamic decision of which PCA to select
is itself based on a policy. Thus, there is a policy set con-
taining the rules governing PCA selection. The PCA rules
are defined so that they are mutually exclusive and only one
of them is applicable in a particular situation. Although
this might seem complex, it is not really so because there
are typically a small number of combination algorithms to
choose from. This is enforced by using the combination al-
gorithm @ ‘only-one-applicable’ to choose among the PCAs.
‘only-one-applicable’ returns the applicable PCA if one and
only one rule evaluates to ‘permit’. If zero or more than one
rule (and hence the PCA) evaluates to ‘permit’, then an er-
ror code is returned. All rules in the policy set are evaluated
and the applicable PCA is selected to be used for resolving
conflicts for this access request.

Now in stage two, the final authorization decision is calcu-

lated by evaluating the TAPS as £(T APS) = {TAPS"Aarrty,

AR} ¢ DPS — d. As defined in Definition 7, in this eval-
uation, we consider all policies present in the TAPS and
evaluate them against the access request AR. The © used
in this case is PC'Aappiy, which is calculated in the previous
step.

As an example, using this model, Alex can create a PCA
selection rule to the effect that if the £4 = (‘emergency’ =
‘true’), then the PCA ‘permit-overrides’ is used. The effect
will be to allow access to anyone who can satisfy at least
one of the applicable policies. On the other hand, in case
where £4 = (‘emergency’ = ‘false’), PCA ‘deny-overrides’
can be used. This will limit access to holders of those at-
tribute combinations that are not denied by any policy and
are allowed access by at least one applicable policy. Since
this evaluation is done during each access request, the PCA
will change dynamically whenever there is an emergency.

In addition to providing this novel functionality, our frame-
work proposes the use of TAPS to reduce the policy set to
be evaluated for each access request. As shown in Section 6,
this improves the real time system performance by 4-8 times.
Formulation and evaluation of these rules is explained in
more detail in Section 4.1.

4. SYSTEM DESIGN AND BACKGROUND
MODULES

In this section, we will first present the system design for a
generic implementation of this authorization framework, and
then describe some background modules used for building

the prototype.

4.1 System Design

The proposed system has a two stage authorization pro-
cess, where in the first stage the applicable policy set and
the applicable PCA is determined and in the second stage
the applicable policies are evaluated to reach an authoriza-
tion decision. For the first stage, the policy is created with
an index rule for each policy in the TAPS. An index rule is
of the form < {SA, RA,EA} : Policyld >, where Policyld
is the index id of a particular policy. For example, if policy
‘P1234’ is applicable to requests in an emergency scenario,
then the index rule will be represented as -
< {EMT.EMT License = ‘valid'} : P1234 >
< {CompanyY.Dispatched = ‘true’} : P1234 >
< {EMT.Employer = ‘CompanyY'} : P1234 >

The attribute in the index rule is directly provided by
an attribute provider (AP)2. In this example, the three at-
tributes jointly establish that the EMT’s license is valid, he
works for company Y and company Y was dispatched to
the emergency by the 911 operator. These attributes will
be provided by distinct entities. Using them together can
establish a complex fact, which cannot be verified by any
single entity in the whole system. Note that if an index rule
does not contain any attributes i.e. < x : Policyld >, then
it is true by default and that policy is always included.

For an access request, the attributes present in the request
are compared against the index rules and, in many cases,
only a small number of policies will be included in the TAPS.
As aresult, the policy evaluation stage will be much faster in
these cases. The diagram in Figure 1 describes the dynamic
authorization process. A similar policy is created with an
index rule for each available PCA. Based on the attributes
in the index rules, we determine which PCA will be applied
to this particular request.

Access request
for a resource

Policies applicable to this
request are selected

I

The PCA is chosen
dynamically based on the
context of the request

|

The policies applicable to
this access request are
evaluated

I
@ Yes

No

Decision

Resolve the conflict using
the PCA

Figure 1: Block diagram of policy evaluation using
the proposed framework.

3An AP is an entity similar to an identity provider. We
define an AP as an entity that can certify certain attribute
values for an individual due to its special relationship with
the individual. For example, an employer can certify an
employee’s role in an organization.

4.2 Application Scenario

To understand the implication of using context informa-
tion in the total applicable policy set (TAPS) evaluation
and using dynamic PCA selection, let us again consider
the previous health care domain scenario. Assume that
Alex’s HMO where he stores his PHRs has access policies
for data based on criteria like data type, membership type,
etc. Alex’s policies also apply to his PHR, as described ear-
lier. Now Alex, who lives in Atlanta is planning a trip to
Florida for a week and he wants his PHR to be accessi-
ble to any physician or ‘paramedic in Florida’ during that
week in case he needs medical help. Using our proposed
model, he can add a special policy saying < {startdate <
date < enddate} : P2345 >, where P2345 describes the spe-
cial permission to ‘physicians’ in general and ‘paramedics
in Florida’. Upon evaluating this index rule, Alex’s au-
thorization system will compare the current date with the
date range in the index rule and will include P2345 during
that particular week. Since the proposed model is attribute
based, Alex can take advantage of this by adding multiple
attribute combinations. Assume that Alex’s location can be
tracked from his mobile phone, which communicates that to
his authorization system over a secure channel. Then Alex
can set the index rule as follows : < {startdate < date <
enddate}, {location = Florida} : P2345 >.

This additional attribute will make sure that the lenient
PCA is chosen only when he is physically in Florida*. Alex’s
mobile phone is used to provide his location, but the PHR
will be primarily be accesses by the paramedics and physi-
cians using their systems. In the event that he has to cancel
his trip, his more lenient policy will not be in effect and
his information will not be available to any paramedic in
Florida. He also has the convenience of setting this rule
once and then forgetting about it, irrespective of whether
he actually makes the trip or not.

It is important here to note the difference between creat-
ing a new access rule in Alex’s policy vs. creating an add-on
access policy. While the former is possible using the current
authorization systems, it will require Alex to modify his pol-
icy by adding new access rules and probably changing the
rule combination algorithm. The effects of doing both these
actions is hard for an average user to comprehend. If Alex
has set his RCA as ‘deny-overrides’ and he wants to add his
new rules to permit access during that particular week, he
will need to either change the RCA to ‘permit-overrides’ or
change each of the deny rules in the policy. Doing either
is not desirable because his deny rules will be bypassed. In
the proposed system, Alex can add a policy to the policy set
defining his access policies and change the PCA to ‘permit-
overrides’ for the specified period. Doing so will still keep
all of Alex’s deny rules unmodified and his policy set will
allow access when at least one of his policies allow access,
which is what he intended to do. This is hard to do in cur-
rent systems, because PCA cannot be changed according to
dynamic requirements. The resulting policy set is also more
modular and analyzing such a policy set is easier. Finally,
it saves the effort and complexity of analyzing the effects of
changing the RCA or policy rules, not to mention restoring
the original state once the specified time has passed. An

4We assume that Alex always carries his mobile phone with
him because in essence the service is tracking a device and
not Alex himself.

example XACML policy for Alex is shown in Appendix B.
An additional benefit of our framework is that SHC can
create index rules using attributes like ‘username’®, ‘datatype’,
and ‘data source’ to create index rules to quickly select rel-
evant policies when a physician tries to access Alex’s PHR.
These relevant policies form the TAPS for this access re-
quest. Suppose policy P880 contains Alex’s disclosure poli-
cies, P130 contains data source’s policy, P110 contains HIPPA
policy, P112 contains the electronic privacy act®, and P21
contains the SHC’s disclosure policies. SHC’s index rules for
Alex’s PHR are shown below :
< {‘username = Alez'} : P880 >
< {‘datasourceld = 814820"} : P130 >
< {‘datatype = PHR'} : P110, P112 >
< {x}:P21>
Note that, in the last index rule, the attribute value is left
blank, which results in P21 being included every time. Using
this efficient evaluation of TAPS, SHC can quickly determine
the policies that need to be evaluated for an access request
to Alex’s PHR. We report some performance results of the
efficiency of TAPS evaluation in Section 6.

S. PROTOTYPE IMPLEMENTATION

In this section, we describe the prototype implementa-
tion of the proposed framework. The prototype implemen-
tation of the framework extends the functionality of the
policy language. The implementation is done using Sun’s
open-source XACML engine implementation, where we im-
plemented additional modules and PCAs using Java. The
generated policies are written in XACML. We use the Sun
XACML PDP implementation because its loading and eval-
uation times are both reasonable when compared to other
popular XACML implementations like XACMLLight and
XACML Enterprise. Its overall performance is much bet-
ter than XACMLLight and close to XACML Enterprise. A
detailed comparison of the three implementations is done
in [25].

The authorization policy consists of multiple policy sets.
These sets consist of the system policy, the patient policy,
and the data source policy. The system can be extended to
consider the data accessor’s policy to ensure that the obli-
gations associated with the access request will be honored.
The authorization module is set up as shown in Figure 2.
The ‘Policy Load and Evaluation’ and ‘Ancillary’ modules
are part of the standard XACML engine and the ‘PSS’ and
‘PCA Selector’ (explained later in this section) are added to
the XACML engine. To make the proposed model closely
compliant with the existing XACML engine, we have mod-
eled the two new sub-modules as XACML policy sets, so
that the XACML policy engine can be used to do these
evaluations as well.

Policy Set Selector (PSS) - The PSS takes the autho-
rization policy as the input, which contains all the available
policy sets. The schema of the TAPS as a policy file is shown
in Figure 3. It is organized in the Subject, Resource, Action
and Environment structure. The PSS evaluates each policy
set to find out all the sets that are applicable to this access
request. The PCA used here is ‘all-that-apply’, which is es-

5The system can use any pseudonym to link Alex’s PHR to
his policies.

5The assumption here is that the rules in these acts can be
encoded in a high level language like EPAL or XACML.

XACML Policy Engine

PSS

XACML
Engine

Ancillary PCA Selector
Modules

Policy Load

and Evaluation
Module

Figure 2: Modified XACML policy engine.

pecially developed for the PSS. The function of this PCA is
to evaluate all the policy sets and output all that apply. All
the policy sets selected by the PSS are stored in a data struc-
ture and only those policy sets are considered in the evalu-
ation phase. As mentioned earlier, this reduces the number
of policies to be evaluated for an access request and results
in considerable run time performance improvement. A de-
tailed discussion of the performance improvement is given
in Section 6.

<PolicySet Combination Algo: all-that-apply>
<Policy Description : Policy 1>
<Subjects>
Required Attribute Sets
</ Subjects >
<Resources>
Policy set or policy
</Resources>
<Actions>
Include Policy set / policy
</Actions>
</ Policy>

<Policy Description : Policy 2>

</Policy>
<Policy Description : Policy 3>

</Policy>

</ PolicySet>

Figure 3: Policy set selector module as a XACML
policy set.

PCA Selector - The PCA selector reads the PCA se-
lection file, which is described as a XACML policy. This
description is created by the entity that is responsible for
making sure that all the relevant policies are taken into con-
sideration. This entity should make sure that the all the
available PCAs are encoded as individual policies as shown
in Figure 4. This system can be used as a static system by

defining the selected PCA with no attributes (hence always
applicable) and defining all the other PCAs with attributes
that are never true. Although such a configuration may not
provide some of the key benefits of the proposed framework,
it may sometimes be required for backward compatibility.

The PCA selector file is a policy set as shown in Figure 4.
All the PCAs are described as contained policy sets and the
combination algorithm used is ‘only-one-applicable’, which
is a standard XACML PCA. It returns ‘permit’ if one of
the policy sets is applicable and ‘deny’ if zero or more than
one policy set are applicable. In case the result is ‘permit’,
the applicable policy set returns the name of the PCA to be
used in combining policies. This module provides the novel
functionality of selecting the PCA dynamically as described
in Section 3.2.

<PolicySet Combination Algo: only-one-applicable>
<Policy Description : Policy 1>
<Subjects>
Required Aftribute Sets
</ Subjects >
<Resources>
PCA Algorithm 1
</Resources>
<Actions>
Use this PCA algorithm
</Actions>
</ Policy>

<Policy Description : Policy 2>

</Policy>
<Policy Description : Policy 3>

</Policy>

</ PolicySet>

Figure 4: PCA selector module as a XACML policy
set.

To continue with the example in Section 3, the PCA se-
lection policy set will be set as shown in Figure 4. Initially,
when there is no emergency, the PCA ‘deny-overrides’ will
be selected. This will be indicated by the attribute ‘emer-
gency’ being set to false. When there is an emergency, the
attribute is set to true and the PCA evaluation will give the
output as ‘permit-overrides’. The output PCA again be-
comes ‘deny-overrides’ once the emergency is over and the
corresponding attribute is set to false.

This attribute can be provided by a number of entities
like the ‘emergency operations center’, the ‘911 operations
center’, the patient himself or any other entity that the pa-
tient’s agent trusts to provide this attribute. Although it
sometimes might be difficult to ascertain that this particu-
lar patient is involved in an emergency, the patient would
give more priority to making his PHR available to medical
personnel in an emergency rather than to his privacy. Since
the entire system can be audited, any breach of privacy can
be discovered on audit.

6. PERFORMANCE EVALUATION

In this section, we will discuss the performance evaluation
of the various components of the proposed framework. We
are basically measuring the following parameters: 1) over-
head in evaluating the total applicable policy set (TAPS),
2) overhead in dynamic selection of the PCA, and 3) time
saved in evaluating just the TAPS (and evaluating applica-
ble policies) compared to performing a target match on all
the available policies (and evaluating applicable policies).

To measure these parameters, we evaluate the following -
1) TAPS evaluation time vs. total number of available poli-
cies , 2) PCA evaluation time vs. number of attributes in
each index rule, 3) evaluation time vs. number of policies
(with and without TAPS). Reasons for choosing these pa-
rameters and the evaluation results are discussed in detail
in Section 6.2.

6.1 Evaluation Setup

In the evaluation setup, we create XACML policies for the
modules described in Section 5. For evaluating the TAPS,
we use the schema shown in Figure 3. We setup a XACML
policy file with one index rule representing each available
policy file (or policy set). Each index rule contains two at-
tributes, both of which are required for access. There are
16 attributes in total and we select 2 out of them randomly.
For the experiments, we use 1,2,4 and 8 index rules for each
policy file in each run of the experiment. We also vary the
total number of available policies from 1 to 10,000 increasing
the number of policies by an order of magnitude each time.
Most of the real world policies use 10-20 user attributes com-
ing from the organizations LDAP server [22], [3], hence we
feel 16 is a representative number. Moreover, this is a con-
figuration parameter and not a limitation because it can
be scaled easily. We also scale the number of attributes in
one of the experiments (as described in this Section 6.2.2).
We believe that most of the real world systems use much
less than 10,000 policies. We evaluate performance up to
10,000 policies to observe the system performance over a
broad range.

For selecting the PCA, we use the schema shown in Fig-
ure 4. Since we have a fixed number of PCA’s in the system,
we use this evaluation to scale up the number of attributes
from 2 to 10,000 in each index rule. This evaluation gives
us an estimate of the evaluation time in a system with large
number of attributes.

For evaluating the actual policies, we have created policies
with 1,2,4 and 8 rules per policy to be used in different runs
of the experiment. We created sets of 10, 100, 1,000, and
10,000 policies.

All experiments were run on a single 2.4GHz Intel Dual
Core Pentium machine with 2 GB of physical memory.

6.2 Evaluation Results

In this subsection, we present the performance results for
the different cases just described.

6.2.1 Casel

In this case, we evaluate the time consumed in evaluating
the TAPS with varying number of total available policies.
The RCA used is ‘all-that-apply’, so the evaluation consid-
ers all the policies that apply to a particular access request.
We change the number of policies from 1 to 10,000 by in-
creasing the number of policies by an order of magnitude

in each step. We also vary the number of index rules ap-
plicable to each policy to 1,24, and 8 in different runs of
the experiment. The result is shown in Figure 5. We ob-
serve that the evaluations take almost linear time as shown
in this semi-log graph. The evaluation time is within 2 sec-
onds even with 1,000 policies with 8 rules each, whereas with
100 policies with 8 rules each the evaluation time is within
250 milli-seconds.

TAPS Evaluation

100000

10000

=4=1 Rule/Policy
A / —8—2 Rules/Policy
1000

—=—8 Rules/Palicy

Evaluation Time (in ms)

,
=
=

[

10

1 10 100 1000 10000

Number of Policies

Figure 5: Evaluation time vs. number of available
policies.

6.2.2 Case?2

In this case, we evaluate the applicable PCA from a list
of PCAs supported by the system. In our prototype sys-
tem, we have seven PCAs, each denoted as a policy set with
its own index rule. We increase the number of attributes
used in each index rule to understand the effect of scaling
the attributes on performance. We increase the number of
attributes from 2 to 10,000. The run time performance is
shown in Figure 6. We observe that even with 100 attributes
per index rule, the total evaluation time is under 280 milli-
seconds.

PCA Selection

100000

/ 23046.8
10000
19649
1000
2764
80.4 852

—F

=—#—PCA Evaluation Time

Evaluation Time (in ms)

"
=}
3

2 10 100 1000 10000

Number of Attributes/Rule

Figure 6: Evaluation vs. number of attributes per
index rule.

6.2.3 Case3

In this case, we evaluate the same set of policies with and
without the PSS module and compare the performance of

the two systems. The setup is described in Section 6.1. In
each policy file, we have a policy target set up, which is
the default method XACML uses to check whether the cur-
rent policy (file) is applicable to the current request. This
target can be set up by resources, subjects, actions, or envi-
ronments. We set up these targets with applicable subjects
values. This allows us to make a direct comparison with
our experimental setup. Also, this does not limit the use of
target in the experiments conceptually or physically’. We
first run the test with all the files and let XACML engine
perform target matches with all the available policies and
evaluate policies where the target matches. Figure 7 shows
the result of this evaluation with about 1% of the policies
being evaluated.

For comparison with our proposed system, we run the ex-
periment with the same policy set with the PSS module in-
cluded. We evaluate the TAPS using the index rule method
for all the available policies and force the TAPS to be 1% of
the total available policies. The resulting TAPS is stored in
an array and the XACML engine then performs evaluation
of all the files in this array. The combined time for deter-
mining the TAPS and evaluating it is shown in Figure 8. We
include 1 percent of the total policies in the TAPS, which
we believe is more than what most access requests would
require, especially in systems with large number of policies.
We chose this percentage so that we have a view of the worst
case system performance and expect that most real systems
will have fewer policies to evaluate per access request and
the evaluation times will be lower that what is observed in
Figure 8.

Comparing the results in Figure 7 and Figure 8, we ob-
serve that using TAPS evaluation with the index rules and
then evaluating the applicable policies is about 4-8 times
faster than the conventional method. This is specially im-
portant in large systems with a lot of policies. Considering
the worst case scenario (10,000 policies, 8 rules/policy), the
conventional evaluation takes about 210 seconds compared
to 26 seconds on our system. In a more common scenario
(100 policies, 8 rules/policy), the evaluation times are 1.8
seconds and 0.5 seconds respectively. We argue that this
performance improvement is not only significant, but criti-
cal for real time systems.

6.2.4 Case4

In this case, we fix the total number of available policies to
1000 and change the percentage of applicable policies to each
access request. We perform this experiment with 15access
request. We repeat this experiment for 1,2,4 and 8 rules per
policy with and without the PSS system and compare their
performance. The results are shown in Figure 9 and Fig-
ure 10. We observe that in our proposed model the system
evaluation time starts from a very low value and increases
linearly. On the other hand in existing systems, it starts at
near maximum value and remains almost constant.

7. RELATED WORK

"Using target in the policy file is optional in XACML. If
no target is used, the only way to check the applicability of
the policy is to evaluate it and see if it applies to the cur-
rent request. This will be slower than matching the target
and hence we believe that our comparison is fair because we
compare our results with the faster version.

Target Match and Policy Evaluation (without PSS)
(1% Policies Applicable)

1000000

100000 /
10000 / .
1000 /

—4—1Rule/Palicy
—8-2 Rules/Palicy

4 Rules/Policy

Evaluation Time (in ms)

——35 Rules/Policy

,_.
o
a

10 100 1000 10000

Number of Policies

Figure 7: Evaluation time vs. number of total avail-
able policies (conventional XACML).

TAPS and Policy Evaluation (with PSS)
(1% Policies Applicable)

100000
10000 /

g

=

=#=1Rule/Policy
-2 Rules/Policy
4 Rules/Policy

== Rules/Policy

Evaluation Time (in ms)

H
o
=1

10 100 1000 10000

Number of Policies

Figure 8: Evaluation time vs. number of total avail-
able policies (our proposed framework).

In this section, we review related work in the area of con-
flict detection, avoidance and resolution works and compare
them to our proposed framework.

7.1 Conflict resolution

Mazzoleni, et. al, presented a system for integrating au-
thorization policies for different partners organizations [20].
Their core idea is to find the similarity between a set of
policies and to use that information to transform the set of
policies into a single transformed policy which applies to the
request. In their case, the PCA are static there is no way
to choose policies dynamically, whereas in our framework
we can choose the PCA dynamically. Our framework also
allows multiple policies for the same resource, one of which
can be chosen at run time.

Another idea for policy conflict resolution in active databases

was proposed by Chomicki et. al, in [10]. Their system
is based on the Event-condition-action paradigm in which
policies are formulated using ECA rules. A policy gener-
ates a conflict when its output contains a set of actions
that the policy administrator has specified cannot occur to-
gether. This work is specific to dynamically resolving con-
flicts among actions in a system, whereas our focus is more
on a generic policy-based system to protect the resources. In
our framework, the policy composers need not have any idea

Target Match and Policy Evaluation (without PSS)
(Total 1000 Policies)

22000

21000

20000 AV/

—+—1 Rule/Policy

—8—2 Rules/Policy
19000

4 Rules/Palicy
——————l— ___peypolicy

18000 —_—

17000

Evaluation Time (in ms)

16000

1 5 10 15

% of Applicable Policies

Figure 9: Evaluation time vs. number of total avail-
able policies (conventional XACML).

TAPS and Policy Evaluation (with PSS)
(Total 1000 Policies)

5000

5500 /

5000 / =)

1500 ; —+—1Rule/eolicy
/ —8—2 Rules/Policy

4000 /

3500 /

3000 %

2500

4Rules/Palicy

& Rules/Policy

Evaluation Tirme (in ms)

2000

1 5 10 15

% of Applicable Policies

Figure 10: Evaluation time vs. number of total avail-
able policies (our proposed framework).

of the possible conflicts in the system, whereas in Chomicki
the system administrator specifically defines conflicting ac-
tions. Moreover, in our system there can be a number of
authorities who can compose the policies and it is not possi-
ble for any one authority to have an idea of all the possible
conflicts in advance.

7.2 Conflict avoidance

One approach to avoid conflicts in authorization rules is
presented by Yu et. al, in [26]. They argue that a large
number of rules may apply to a service and detecting and
resolving conflicts in real time can be a daunting task. Their
system is completely static and assumes that is it always
possible to determine priorities ahead of time and avoid con-
flicts. We argue that this is not possible in dynamic environ-
ments and is based on multiple factors like the context of the
access request, authorities defining the policies, mandatory
policies (like regulatory) vs. optional policies, and environ-
mental factors.

Another approach for avoiding conflicts in policy specifi-
cation is proposed by Agrawal, et. al, for defining autho-
rization policies for hippocratic databases [5] and [6]. Their
system allows system administrators to specify system poli-
cies for administration and regulatory compliance and these
policies have the highest priority. Users are allowed to spec-
ify their privacy preference as long as their policies do not

conflict with the system policies. In our framework, the
users can specify their preferences even if they have con-
flicts with the other policies. The users policies may override
other polices or be overridden based on context information.
Agrawal’s framework also does not consider changing system
and regulatory policies that may create more conflicts with
accepted user policies. Also, it may result in removal of
conflicts between the new system policy and previously re-
jected user policies, which is not handled in this system. In
our framework, this will be naturally handled without any
action on anyone’s part to resolve the conflict.

7.3 Hybrid Approach

Bertino, et. al, presented an approach which is a hybrid of
conflict avoidance and conflict resolution [9]. In this work,
the authors propose a scheme for supporting multiple ac-
cess control policies in database systems. Here policies may
have ‘strong’ authorization which are without conflicts or
‘weak’ authorization with possible conflicts. Compared to
this framework, we believe that our approach is more generic
because it allows conflicting policies to be composed and re-
solves conflicts based based on context information. To im-
plement Bertino’s proposed system, there should be some
static hierarchy (or first specified rule overrides others) for
conflict avoidance among strong authorizations. In contrast,
our framework will allow dynamic overriding among the au-
thorities.

Another approach to resolving policy conflicts in a hybrid
manner is proposed by Jin, et al. [14]. In their work they
mention that although resolving conflicts using the static
method is easier, it may not be feasible in large systems
with large number of policies. The main difference with
our framework is that the combination algorithms in their
model are defined statically, whereas in our case we decide
the combination algorithm at run time based on context
information. Also, our framework enables the user to add
(remove) PCAs or policies dynamically, an aspect not con-
sidered in [14].

8. CONCLUSION

In this paper, we discussed policy-based authorization sys-
tems and attribute-based systems. We focus on the multi-
authority case, where multiple policies are used to authorize
a single access request. In particular, we expose the prob-
lems in choosing the PCAs ahead of time i.e. during the pol-
icy description. We present a framework to choose the PCA
dynamically during run time based on dynamic attributes.
The framework also supports choosing the applicable policy
sets based on dynamic attributes. This increases the policy
evaluation efficiency of the system and modularizes the poli-
cies enhancing their analyzability. Using dynamic attributes
to determine applicable policy sets at run time provides a
novel method to add and remove specialized policies dy-
namically. We implemented and evaluated a prototype of
the authorization system as a module of a modified version
of Sun’s XACML engine.

9. REFERENCES
[1] Enterprise Privacy Authorization Language (EPAL).
http://www.w3.org/Submission/2003/SUBM-EPAL-
20081110/.
[2] eXtensible Access Control Markup Language
(XACML). www.oasis-open.org/committees/zacml/.

3]

[12]

[13]

[16]

[17]

[18]

Ldap authentication attributes. In
http://docs.sun.com/source/817-

7647/ldapauth. htmlwp19608.

P3P: The Platform for Privacy Preferences.
http://www.w3.org/PSP/.

R. Agrawal, D. Asonov, R. Bayardo, T. Grandison,
C. Johnson, and J. Kiernan. Managing disclosure of
private health data with hippocratic databases. IBM
Research White Paper, Januray 2005.

R. Agrawal, P. Bird, T. Grandison, J. Kiernan,

S. Logan, and W. Rjaibi. Extending relational
database systems to automatically enforce privacy
policies. In ICDE, pages 1013-1022, April 2005.

A. Barth, J. Mitchell, and J. Rosenstein. Conflict and
combination in privacy policy languages. In Workshop
on Privacy in the Electronic Society, October 2004.
E. Bertino, C. Brodie, S. B. Calo, L. F. Cranor,

C. Karat, J. Karat, N. Li, D. Lin, J. Lobo, Q. Ni,

P. R. Rao, and X. Wang. Analysis of privacy and
security policies. IBM Journal of Research and
Development, 53, 2009.

E. Bertino, S. Jajodia, and P. Samarati. Supporting
multiple access control policies in database systems. In
Proceedings of the IEEE Symposium on Security and
Privacy, May 1996.

J. Chomicki, M. J. Lobo, and S. Naqvi. Conflict
resolution using logic programming. IEFE
Transactions on Knowledge and Data Engineering,
15(1), Januray/February 2003.

K. Fisler, S. Krishnamurthi, L. Meyerovich, and

M. Tschantz. Verification and change impact analysis
of access control policies. In International Conference
on Software Engineering, May 2005.

J. Halpern and V. Weissman. Using first-order logic to
reason about policies. In IEEE Computer Security
Foundations Workshop, 2003.

J. Jin, G.-J. Ahn, M. J. Covington, and X. Zhang.
Toward an access control model for sharing composite
electronic health record. In 4th International
Conference on Collaborative Computing, 2008.

J. Jin, G.-J. Ahn, H. Hu, M. J. Covington, and

X. Zhang. Patient-centric authorization framework for
sharing electronic health records. In SACMAT, 2009.
H. Kamoda, M. Yamaoka, S. Matsuda, K. Broda, and
M. Sloman. Policy conflict analysis using free variable
tableaux for access control in web services
environments. In WWW Conference, 2005.

H. Koshutanski and F. Massacci. An access control
framework for business processes for web services. In
ACM Workshop on XML Security, October 2003.

N. Li, Q. Wang, W. Qardaji, E. Bertino, P. Rao,

J. Lobo, and D. Lin. Access control policy combining:
Theory meets practice. In ACM SACMAT, 2009.

E. Lupu and M. Sloman. Conflicts in policy-based
distributed systems management. In IEEE
Transactions on Software Engineering, pages 852—-869,
Nov/Dec 1999.

A. Masoumzadeh, M. Amini, and R. Jalili. Conflict
detection and resolution in context-aware
authorization. In 21st International Conference on
Advanced Information Networking and Applications

20]

(21]

(22]

23]

24]

(25]

[26]

Workshops, May 2007.

P. Mazzoleni, B. Crispo, S. Sivasubramanian, and

E. Bertino. Xacml policy integration algorithms. In
ACM Transactions on Information and System
Security (TISSEC), pages 852-869, February 2008.
A. Mohan, D. Bauer, D. Blough, M. Ahamad,

B. Bamba, R. Krishnan, L. Liu, D. Mashima, and

B. Palanisamy. A patient-centric, attribute-based,
source-verifiable framework for health record sharing.
CERCS Tech Report GIT-CERCS-09-11, Georgia
Tech, 2009.

L. Ngo and A. Apon. Using shibboleth for
authorization and authentication to the subversion
version control repository system. In IEEE ITNG,
2007.

P. Rao, D. Lin, E. Bertino, N. Li, and J. Lobo. An
algebra for fine-grained integration of xacml policies.
In CERIAS Tech Report 2008-21, Purdue University,
2008.

M. Rouached and C. Godart. Reasoning about events
to specify authorization policies for web services
composition. In IEEE International Conference on
Web Services (ICWS), September 2007.

F. Turkmen and B. Crispo. Performance evaluation of
xacml pdp implementations. In ACM workshop on
Secure Web Services, October 2008.

W. Yu and E. Nayak. An algorithmic approach to
authorization rules conflict resolution in software
security. In Annual IEEE International Computer
Software and Applications Conference, July 2008.

APPENDIX

A. ‘ALL-THAT-APPLY’ COMBINATION AL-
GORITHM

Definitions:

P; = i*" Authorization policy.

FID = File Identifier.

FID(P;) = File Identifier for i** authorization policy file.
TAPS = An array to store FIDs. M-Policy = A policy file
with index rules to define applicability of authorization poli-
cies.

Algorithm:

—_

Load M-Policy, Access Request (AR)

2 Define TAPS, initialize i=0, counter=0

3 While (M-Policy (index rules))

4 decision = evaluate(index rule i) against AR
5 if (decision == permit)

6 { TAPS[counter++] = FID(Pi) }

7 else

8 { { continue }

9 increment i

10 return TAPS

B. ALEX’S POLICY

— =Policy PolicyId="Alex's Policy" Rule CombimngAlgld="urn:casiz names:tcozacml 1. O rule-combining-algorithm permit-owverrides">
— =Desaiption>
This 15 Alex's policy to authorize access to s PHE.
</Description>
— =Target>
— =Subjects>
— =Subject>
— =SubjecthIatch Matchld="urnoasiznames:toxacml: 1. O0finction string-equal">
<Attribute Value DataType="http://fwarw w3 org/200 12 E chema#string">doctor<fAttribute Value >
=SubjectAthibuteDesignator AttibuteId="role" DataType="http/fwrwrw w3, org/200 1ML E chemat#string /=
<fSubjecthIatch>
<fSubject>
— =Subject>
— =SubjecthIatch Matchld="urnoasiznames:toxacml: 1. O0finction string-equal">
<Attribute Value DataType="http:fwwrw w3 org/200 1L L3E chema#string" >parame dic </ Attribute Value >
=SubjectAthibuteDesignator AttibuteId="role" DataType="http/fwrwrw w3, org/200 1ML E chemat#string /=
<fSubjecthIatch>
<fSubject>
<fSubjects>
— <Resources>
<AnvResowrce/>
</Resomces>
— <Actions>
<AnvAction>
<fActions=
</Target>
— <Rule Ruleld="CommitRule" Effect="Permit">
— =Target>
— =Subjects>
— =Subject>
— =SubjecthIatch Matchld="urnoasiznames:toxacml: 1. O0finction string-equal">
<Attribute Value DataType="http://fwarw w3 org/200 12 E chema#string">doctor<fAttribute Value >
=SubjectAthibuteDesignator AttibuteId="role" DataType="http/fwrwrw w3, org/200 1ML E chemat#string /=
<fSubjecthIatch>
— =SubjecthIatch Matchld="urnoasiznames:toxacml: 1. O0finction string-equal">
<Attribute Value DataType="http:/fwarw w3 org/200 1L 3E chema#string" > londa</Athibute Value >
=SubjectAthibuteDesignator Atthibuteld="4Alex-Location" DataType="http:fwwrw w3 org/200 121 E chematstring"f >

<{Subjecthlatch>
<fSubject>
— =Subject=
— =SubjecthIatch Matchld="urn casiznamestexzacml 1. O finction string-equal"=>
<Attribute Value DataType="http /fwww w3, org/200 VEMLS chema#string" >paramedic </ Attribute Value >
<SubjectAthibuteDesignator Attributeld="role" DataType="http Mwww w3 org200 1ML E chema#string /=
<{Subjecthlatch>
— =SubjecthIatch Matchld="urn casiznamestexzacml 1. O finction string-equal"=>
<Attribute Value DataType="http /fvwrarw w3, org/ 200 130 S chema##string" »Honda</Attribute Value>
<SubjectAthibuteDesignator Attributeld="requester-location" DataType="http Mwww w3 orgl200 1ML E chema##string /=
<{Subjecthlatch>
— =SubjecthIatch Matchld="urn casiznamestexzacml 1. O finction string-equal"=>
<Attribute Value DataType="http /fvwrarw w3, org/ 200 130 S chema##string" »Honda</Attribute Value>
<SubjectAthibuteDesignator Attibuteld="4Alex-Location" DataType="http:\fwww w3 orgl200 1200 S chemadtstring" =
<{Subjecthlatch>
<fSubject>
<fSubjects>
— <Resources>
— <Resource>
— <ResourceMatch Matchld="urn oasisnames tozacml 1. 0fincton string-equal">
<Attribute Value DataType="http /fwww w3 org/200 1V EMLS chema#string" > PHE </Attribute Value >
<ResowrceAttributeDesignator Attributeld="urm casisnamesteczacml 1 Dresource resource-1d" DataType="hitp /ferww w3 ot
F200150L S chemadstring" =
</ResomrceMatch>
</Resomce>
</Resomces>
— <Actions>
— <Action>
— <ActionlIatch Matehld="uroastsnamestoxacml 1 Ofinction sting-ecqual"=
<Attribute Value DataType="http /fwraw w3, org/200 13 S chema##string »read</Attribute Value >
<ActionAttiibuteDesignator Attibuteld="urn oasisnamestozacml 1 D achonaction-1d" DataType="http ffwwrw w3 org
F200150L S chemadstring" =
<fActionMatch=
<fAction>
<fActions=>
<{Target>
</Rule>
</Policy=

Figure 11: An example policy for Alex.

