
A SYSTEM-ON-A-CHIP (SoC) architecture

with reconfigurable logic and multiple process-

ing elements sharing a common memory, like

that shown in Figure 1, is likely to become quite

common in the near future. For example, pro-

grammable-logic companies are producing sin-

gle chips containing millions of reconfigurable

logic gate equivalents and full-custom VLSI

processors. Designers can customize such chips

by reprogramming the reconfigurable logic or

the processors. We envision a scenario in which

a few highly reconfigurable, reprogrammable

SoCs appear in most embedded applications that

demand rapid upgrades, fast time to market, and

low cost.

However, changing the SoC architecture

and associated software can require significant

re-porting or reconfiguration of the real-time

operating system. Hence, our work focuses on

custom configuration of hardware-software

RTOSs for SoCs. This article introduces the δ
hardware-software RTOS framework, a proto-

type hardware-software generation tool that

aids in customized RTOS-SoC codesign.

Motivation
Commercial RTOSs available for popular

embedded processors provide significant

reductions in design time. But they typically

don’t take advantage of hardware to implement

any of their functions, probably because

processors and custom hardware accelerators

have historically resided on separate chips.

Therefore, partitioning functionality between

hardware and software has increased system

speed only when the dramatic speedup pro-

vided by hardware compensates for the chip-

to-chip communication cost, as is the case for

graphics coprocessors. Large communication

costs, however, have limited fine-grained hard-

ware-software partitioning. The advent of SoCs

has greatly reduced this communication barri-

er to splitting logic between hardware and

software on the same chip. Therefore, we devel-

oped the δ framework.

Analogy
Early computer microarchitecture designers

did not fully consider the compiler’s effect on

performance. With the advent of reduced-

instruction-set computing, however, almost all

computer architects began to include the com-

piler early in microarchitecture design.

Codesign of the compiler and the computer
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The δ framework for RTOS-SoC codesign helps

designers simultaneously build a SoC or platform-

ASIC architecture and a customized hardware-

software RTOS. Examples generated by this

prototype tool include RTOS designs that speed

up applications by 27% or more, using a small

amount of hardware area.
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architecture can be considered an example of

hardware-software codesign.1,2

Many of today’s SoC designs are single-chip

implementations of prior multichip PCB

designs. The SoC designers make only margin-

al changes of the PCB design; for example, the

SoC might use exactly the same bus structure

as the PCB. It is certainly not common practice

to codesign the SoC and the RTOS that will run

the application code. In this respect, much of

today’s SoC design is analogous to early com-

puter architecture design performed with no

consideration of the compiler.

Programming model
We focus our research on multiprocessor

SoC designs. We assume that these SoCs use

current programming models for real-time

embedded systems. Specifically, we assume

that applications execute with multiple threads

of control, using the shared-address-space or

message-passing programming models.

Research goal
An important goal of our research is that our

RTOS-SoC designs be easy for programmers to

use. The 1990s saw the spectacular failure of sev-

eral large parallel-processing companies such

as Thinking Machines and MasPar. Although we

cannot point to a single cause of the failures, the

general opinion seems to be that these compa-

nies’ large machines were very difficult to pro-

gram. To avoid programming difficulty, we

deliberately use a few (four to 10) processors

with existing compilers such as GCC. Thus, no

innovation is required for compiler and proces-

sor design in our SoCs. Instead, we leverage

processors and compilers available on the mar-

ket. Specifically, for our simulation engine, we

use the Mentor Graphics Seamless Coverifica-

tion Environment (CVE), which comes with

Seamless Processor Support Packages. More

than 30 are available, including packages for

various Advanced RISC Machine (ARM) proces-

sors, IBM PowerPC (PPC) processors, and DSPs

(http://www.mentor.com/seamless/).

Atalanta RTOS
As part of the δ framework, we developed

the Atalanta multiprocessor RTOS kernel for

SoC architectures. Atalanta provides key RTOS

features including multitasking capabilities;

event-driven, priority-based preemptive sched-

uling; and intertask communication and

synchronization. Atalanta’s small, compact,

deterministic, modular, library-based architec-

ture is important for SoC applications. Atalanta

also supports special features such as priority

inheritance and user configurability.3

Atalanta provides various system objects for

intertask communication and synchronization.

Event groups, mailboxes, queues, semaphores,

and mutexes (mutual exclusion objects) are

available for tasks executing on the same

processor or different processors in a homoge-

neous architecture. All these objects support

the shared-address-space programming model.

The mutex, a binary semaphore that imple-

ments priority inheritance, enables program-

mers to prevent priority inversion, thus

providing a critical capability for real-time

applications. The basic semaphore does not

implement priority inheritance. Atalanta also

provides message-passing system calls for com-

munication between tasks on different proces-

sors in a heterogeneous architecture.

The Atalanta kernel is currently under eval-

uation in several hardware-software codesign

research projects using both ARM and PPC

processors.3

Approach
The δ framework is designed to provide

automatic hardware-software configurability to

support user-directed hardware-software

partitioning.1,2,4
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Graphical user interface
Figure 2 illustrates the framework’s graphical

user interface, which allows the user to select

RTOS features. For some features, both hard-

ware and software versions are available. In

Figure 2, the user has specified four PPC CPUs

(specifically, PPC 750s). Furthermore, the user

has chosen to implement deadlock detection in

software and the SoC lock cache (SoCLC) in

hardware. (The SoCLC, a hardware lock cache

to which lock variables are memory-mapped,

improves performance and real-time pre-

dictability of lock-variable access.) Finally, for

interprocedure calls (IPCs), the user has chosen

only semaphores under IPC methods.

Partitioning methodology
Figure 3 shows a novel approach to automat-

ing the partitioning of a hardware-software

RTOS using predesigned hardware and soft-

ware RTOS components. The δ framework

takes the following input:

� Hardware RTOS library. This library contains

the SoCLC, the SoC deadlock detection unit

(SoCDDU), and the SoC dynamic memory

management unit (SoCDMMU).

� Base system library. This library contains

basic elements including bus arbiters and

memory elements such as various caches

(L1, L2, and so forth). It also holds I/O pin

descriptions of all processors our system

supports.

� Software RTOS library. This consists of the

Atalanta kernel.

� User input. The user can select the number

of processors, the processor type (such as

PPC 750 or ARM9TDMI), deadlock detection

in hardware (SoCDDU) or software, dynam-

ic memory management in hardware

(SoCDMMU) or software, a lock cache in

hardware (SoCLC), and different IPC meth-

ods. (Although Atalanta implements all the

IPC methods in software, when a specific

hardware RTOS element is chosen, the IPC

method may be altered to depend on hard-

ware support. For example, if the SoCLC is

chosen, the lock variables will be memory-

mapped to the SoCLC.)

The δ framework outputs the Makefile,

User.h, and Verilog header files shown in Figure

3. These are configuration files that combine

the hardware-software RTOS IP library compo-

nents specified by the user.

The RTOS hardware IP available in the δ
framework includes the SoCLC, the SoCDDU,

and the SoCDMMU. The SoCLC stores lock vari-

ables in a separate lock cache outside the mem-

ory system, thereby reducing lock latency, lock

delay, and bandwidth consumption in a shared-

memory multiprocessor SoC.5,6 Because each

lock variable requires only 1 bit, the hardware
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Figure 2. Graphical user interface for the δ framework.

User
input

Makefile

User.h

Verilog

Graphical
user

interface

Base
system
library

Hardware
RTOS
library

Software
RTOS
library

Figure 3. Automatic generation of configuration files.



cost is low. For example, in an experimental

SoC, we synthesized a SoCLC with 128 lock vari-

ables that cost approximately 7,000 gates.

The SoCDDU performs parallel hardware

deadlock detection by searching for deadlocks

on the resource allocation graph in hardware.7

It provides a fast, low-area implementation of

runtime deadlock detection. Compared with

software, the SoCDDU reduces deadlock detec-

tion time by 99%.

The SoCDMMU implements dynamic mem-

ory allocation and management in hardware to

improve both average- and worst-case memory

allocation time.8,9 For example, in a practical

example, the SoCDMMU reduced average-case

allocation time by 440% compared with soft-

ware memory allocation (already optimized for

speed).8

Target SoC
The δ framework targets a SoC consisting of

custom logic, reconfigurable logic, and multiple

processing elements, all sharing a common

memory, as shown in Figure 1. Figure 4 shows an

example of such a SoC, in which four PPC

processors communicate with second-level

memory and reconfigurable logic over a single

bus. However, nothing in the δ framework

requires PPC processors or a single bus; the only

requirement for additional processors (currently

the framework supports only the PPC 750, PPC

755, and ARM9TDMI) is that processor-specific

assembly code for the software RTOS must be

written for the new processor. All the hardware

RTOS components have well-defined interfaces

to which any processing element—including a

hardware (non–Von Neumann or non-instruc-

tion-set) processing element—can connect and

thus use the hardware RTOS component’s fea-

tures. In other words, both the custom and

reconfigurable logic can contain specialized

processing elements that interface to the hard-

ware RTOS components.

Examples and experimental results
To test the δ framework, we simulated vari-

ous RTOS configurations using the Mentor

Graphics Seamless CVE. Figure 5 shows the δ
tool flow generating five different hardware-

software RTOS instantiations. All five have the
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same chip architecture: four PPC processors

with a single bus and shared memory.

The first configuration, RTOS1, is for a sys-

tem implementing a database transaction

example with software semaphores and spin

locks.6 For comparison with RTOS1, we gener-

ated RTOS2, which uses a SoCLC along with the

same database example. Figure 4 shows the

SoC architecture for this case.

The third configuration, RTOS3, is a software

RTOS with deadlock detection in software. It is

designed for the shared-memory SoC already

described. RTOS4 is for a system using the

SoCDDU hardware. Finally, RTOS5 is for a sys-

tem using both a SoCLC and a SoCDDU.

We simulated these systems in the Seamless

framework, using the Synopsys VCS Verilog sim-

ulator and Mentor Graphics Xray for application

code debugging. We compiled the software

application code and the software RTOS code

for execution on the PPC processors, and we

instantiated the hardware part of the configured

RTOS in a top-level Verilog file that could exe-

cute in the Seamless framework on the Synopsys

VCS simulator. We interfaced the processors

with the shared memory and other hardware

RTOS components through an

address decoder, an arbiter, and a

memory controller.

To verify that the generated

RTOS1 and RTOS2 configurations

are correct, we used the same data-

base example mentioned previous-

ly in connection with the SoCLC.6

The example includes accesses to

both short and long critical sections.

Long critical sections are actual

database-copying actions, whereas

short critical sections are synchro-

nization actions among server tasks

and client tasks before a long data

transaction begins.

Table 1 presents our experimen-

tal simulation results for the data-

base example. It compares lock

delay, lock latency, and total execu-

tion time for RTOS1 (with software

locks) and RTOS2 (with SoCLC).

Both configurations ran with 40

tasks. RTOS2 achieves a speedup of

27% over RTOS1 on the same architecture.

To estimate the added area cost of RTOS2,

we synthesized the SoCLC to a semicustom

library and to reconfigurable logic (using a

Xilinx 4000 series FPGA as an example for

reconfigurable logic area). Table 2 shows the

hardware area we used for the SoCLC with sup-

port for up to 64 short and 64 long critical-

section locks. Table 2 also shows the SoCDDU

hardware area for an example we discuss later.

On the basis of these results, δ framework

users can choose between two tradeoffs: Gain a

speedup using the SoCLC with chip space over-

head, or use software locking and save the

hardware for other uses (or simply reduce over-

all chip size).

To verify that the generated configurations for

RTOS3 and RTOS4 are correct, we considered

how the SoCDDU would perform in an example

based on a Jini lookup service application10 in

which client applications can request services

through intermediate layers (lookup, discovery,

and join). This system has four clients (four PPC

processors) and four services: peripheral com-

ponent interconnect (PCI), MPEG, fast Fourier

transform (FFT), and wireless interface hardware
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Table 1. Average-case simulation results for the database example.

Lock latency Lock delay Execution time 

Configuration (clock cycles) (clock cycles) (clock cycles)

*RTOS1 (without SoCLC) 1,200 47,264 36.9 million

RTOS2 (with SoCLC) 908 23,590 29 million

Speedup factor 1.32 2.00 1.27
*RTOS1 used semaphores for long critical sections and spin locks for short critical sections.

Table 2. SoCLC and SoCDDU hardware area.

                                  Total area                                   

Chip technology SoCLC SoCDDU

Semicustom VLSI 7,435 gates using a 364 gates using an AMI

TSMC* 0.25-µm Semiconductors 0.3-µm

standard cell library standard cell library

from LEDA**

Xilinx XC4000E 532 sequential logic gates 10 sequential logic gates

4003EPC84 FPGA 9,036 other gates 559 other gates
*Taiwan Semiconductor Manufacturing Corp.

**Library of Efficient Datatypes and Algorithms



units. The first processor, MCP750-

1, processes video streams. The

second, MPC750-2, completes sig-

nal-processing algorithms. The

third, MPC750-3, handles fax, voice,

and e-mail. The fourth, MPC750-4,

handles communication functions.

Because the system has multiple

requesters and resources, deadlock

is possible. Therefore, the system

could benefit from the SoCDDU.

Figure 6 illustrates the example.

The sequence of requests and grants

leads to a deadlock caused by event

e5 at time t5 (a previous article7 pre-

sents the sequence in detail). We

did not obtain the processing times

shown from an actual industrial

product; rather, we estimated them

to exemplify an application running

setup code in C to dynamically

change (at runtime) hardware

resource use among the processors.

We assumed that if a processor

needs two resources, it cannot proceed in its com-

putation until it acquires both resources. This

assumption is valid in typical multimedia appli-

cations processing streamed data.

Suppose that we start deadlock detection at

time t5 and that the time needed for deadlock

detection is ∆. We compared the ∆ values

required with two deadlock detection methods:

software versus SoCDDU. We compared the

two methods’ effects on deadlock detection

time and total execution time. Table 3 shows

the results. Total execution time speeds up 38%

in this example. Table 2 shows the hardware

area used by the SoCDDU.

Both the SoCLC and the SoCDDU are scal-

able according to the number of processors,

lock variables, or hardware resources. Thus, δ
framework users can consider various prede-

fined hardware-software RTOS partitions and

SoC architectures.

Incorporating the δ framework in
platform-based design

How might a designer use the δ framework

in platform-based design? That depends on

whether the user is designing a custom platform

ASIC (also known as a SoC) for eventual fabri-

cation or using an existing platform ASIC.

In the former case, the δ framework helps in

design space exploration of the SoC architec-

ture. For example, if fast locking is important

for the kinds of applications to be run, the

designer might want a SoCLC in custom hard-

ware. On the basis of this application analysis,

the designer would use the framework to nar-

row down the set of RTOS choices and corre-

sponding SoC architecture choices. Then, the

designer can simulate each customized RTOS

and SoC architecture in a cycle-accurate simu-

lator such as the Seamless CVE to obtain sam-

ple code traces for the applications to be run

on the SoC. Seamless CVE also supports non-

cycle-accurate simulation modes for faster

design space exploration, and the δ framework

works with these modes as well.

Designers should also consider additional

factors such as power consumption. Then, they

can make a final choice as to which SoC to fab-

ricate. After fabrication, the processors, the cus-

tom hardware RTOS services, and the amount

of reconfigurable logic included on the SoC

will limit the RTOS choices available.
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Table 3. Software versus SoCDDU in performance time.

Deadlock Detection time ∆ Total execution 

detection method (clock cycles) time t5 + ∆ (clock cycles)

Software algorithm 16,928 61,131

SoCDDU 2 44,205



In the postfabrication scenario, a particular

real-time application might have a rare deadlock

condition, which, if encountered, should trigger

system reset as soon as possible. An already fab-

ricated SoC with on-chip reconfigurable logic

could implement the hardware SoCDDU in

reconfigurable logic for this application.

Potentially, any of the hardware RTOS services

could be placed in reconfigurable logic.

Therefore, to the extent possible (which is limit-

ed by area), the δ framework can generate a

hardware-software RTOS customized for a par-

ticular set of application requirements to be run

on a platform ASIC with reconfigurable logic.

Even without reconfigurable logic or custom

RTOS logic included on the SoC, the framework

is useful, but perhaps no more useful than an

existing software RTOS available commercially.

Finally, the δ framework can be extended to

include additional hardware and software com-

ponents to generate a wider range of customized

RTOSs. For example, a designer might notice that

the application software would run much faster

and consume less energy if a particular RTOS

function were implemented completely or part-

ly in hardware. Although retooling the RTOS gen-

eration framework requires effort (much as

integrating new instructions into a compiler

does), a user with access to and understanding

of the source code could add such functionality,

or the company providing the framework could

make these extensions. In fact, the existing three

hardware RTOS IP components resulted from our

trying to run application programs in a multi-

processor SoC and then asking, How can we

speed up these programs dramatically with a very

small hardware addition (less than 20,000 gates)

to the RTOS? In short, we consider the δ frame-

work to be an early conceptual prototype of the

RTOS side of the equation in RTOS-SoC or RTOS-

platform ASIC codesign.

WE BELIEVE that platform-based design must

pay more attention to software in the platform

definition process. Bearing this out, our results

with the δ framework show that SoC architec-

tures can benefit greatly from early codesign

with a hardware-software RTOS. In particular,

we have shown several examples in which a

small hardware area (less than 10,000 gates)

results in speedups of 27% or more in likely

application scenarios. In our future work, we

plan to more fully automate RTOS generation

by integrating a wider variety of RTOS hardware

components in the δ framework. �
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