
Data Obfuscation

M any application domains benefit from data
sharing, which can range from passing data
to a single party for specific calculations to
aggregating data from many entities for data

mining purposes. In some cases, however, data sharing is
impractical due to privacy concerns. In the case of medical
data, for example, even if the patient’s name is stripped
from the record, attackers can identify the patient by find-
ing just a few accurate readings through other means. This
is unacceptable for both legal and ethical reasons.

As the “Personalization and encryption methods”
sidebar (p. 40) describes, many techniques have evolved
for providing data anonymity and personalization.
Anonymity management in personalization is a Web-
based privacy service that operates on usage rather than
data. Encryption techniques require that data be processed
both before and after dissemination, and are incapable of
offering different protection levels for different end users.
Encryption techniques such as privacy homomorphisms
are also susceptible to chosen-text attacks, in which a
clever choice of plain text or cipher text reveals the key.

We are researching a family of mechanisms that ad-
dresses these limitations. Our data obfuscation tech-
niques work within a data set, lowering individual data
item accuracy in a systematic, controlled, and statisti-
cally rigorous way. Data obfuscation thus lets users dis-
seminate sensitive data in a degraded form that, for
many applications, permits sufficient calculation accu-
racy, but hides the data’s most sensitive aspect. The main
advantage of this technique over data encryption is its
ability to provide multiple levels of data protection by
distributing data that has been obfuscated by different
amounts based on the end users’ needs. In addition to

techniques for
desensitizing data,
data obfuscation encompasses techniques such as data
randomization,1 data swapping,2 and data anonymiza-
tion.3 To study and categorize the security provided by
the various data obfuscation techniques, we introduce a
reversibility property, which quantifies the strength of
an obfuscation technique based on how difficult it is to
reverse-engineer the obfuscated data set. We also discuss
different obfuscation mechanisms and provide early
performance results.

Existing data
security approaches
The database community has long known that attackers
can use characteristic formulas called trackers to compro-
mise even a small query set.4 In general, trackers let at-
tackers calculate database statistics without requiring any
advance knowledge of the database contents, as long as
the system’s queries use an arbitrary characteristic for-
mula to select record subsets.

Data randomization systematically thwarts trackers
from reconstructing a database through repeated queries.
Data mining researchers use randomization techniques to
develop an accurate aggregated data model without the
data record’s precise information. Data randomization
mainly operates on a subset of database tables, fields, and
records to maintain the database’s statistical properties.
The end user can manipulate data randomization to ob-
tain the original values, after perturbing them by adding
either a random variable or data discretization.1 While re-
searchers have applied data randomization mainly to
databases and data mining, the concept is quite similar to

DAVID E.
BAKKEN

Washington
State
University

RUPA

PARAMESWARAN

AND DOUGLAS

M. BLOUGH

Georgia
Institute of
Technology

ANDY A.
FRANZ AND TY

J. PALMER

Washington
State
University

34 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/04/$20.00 © 2004 IEEE ■ IEEE SECURITY & PRIVACY

In some domains, the need for data privacy and data

sharing conflict. Data obfuscation addresses this dilemma

by extending several existing technologies and defining

obfuscation properties that quantify the technologies’

usefulness and privacy preservation.

Data Obfuscation: Anonymity
and Desensitization of
Usable Data Sets

Data Obfuscation

random data obfuscation techniques; data randomization
techniques are extended naturally to produce useable data
sets that can be directly disseminated to end users, which
data obfuscation supports.

Data anonymization attempts to classify data into fixed
or variable intervals. Each data entry is then replaced by its
class interval, and judicious interval choices can ensure
that the statistical information is maintained. Latanya
Sweeney and her colleagues developed a privacy protec-
tion method that guarantees that each data item will relate
to at least k other entries, even if the records are directly
linked to external information.3 This technique takes a
generalization and suppression approach to obtaining the
required anonymity level: generalization replaces a value
with a less specific value, while suppression does not re-
lease a value at all.

Data swapping intelligently swaps entries within a sin-
gle field in a records set so that the individual record en-
tries are unmatched, but the statistics are maintained
across the individual fields.2 Users can perform swapping
such that the swapped values are close to each other, thus
approximating the information in the nonobfuscated
data records. This technique thereby provides a type of
data obfuscation.

The three approaches mentioned earlier fall under
the category of privacy preserving data mining tech-
niques.1 Data obfuscation is a generalization of existing
techniques and has applications beyond data mining.
The “Data obfuscation examples” sidebar (p. 41) lists ex-
ample applications of data obfuscation. Data obfuscation
provides a family of mechanisms that includes the three
techniques mentioned above and many others, and also
provides a standard for categorizing the various obfusca-
tion techniques based on the properties and metrics we
now describe.

Data obfuscation
Data obfuscation techniques feature three main proper-
ties: reversibility, specification, and shift. Figure 1 offers a
high-level description of data obfuscation techniques and
the various properties each supports. We now describe
these properties, emphasizing reversibility, which is es-
sential to data security.

Reversibility
Data obfuscation maps from the original datum, D, to a
new one, D´. Reversibility describes how complex it is
to reverse-engineer a given obfuscated data set, specify-
ing the obfuscation technique’s robustness in terms of
data hiding. An obfuscation technique that is easy to re-
verse-engineer provides little data protection. On the
other hand, an irreversible obfuscation technique re-
quires that data be stored in its original form if that form
needs to be preserved.

Reversibility techniques fall into four general cate-

gories: partial knowledge reversible, process reversible,
combination reversible, and irreversible.

Partial knowledge reversible. An obfuscation tech-
nique is partial knowledge reversible if the attacker can
reverse-engineer the entire data set using a minimum
number of original data set entries. The number of en-
tries required depends on the obfuscation technique.

For example, matching the obfuscated data set with
the original data set’s known entries reveals a pattern if the
obfuscation technique involves a constant offset to the
original data set. Examples of such a technique are

yi = xi + constant, and
yi = xi * (1 + constant),

where xi and yi denote entry i in the original and obfus-
cated data set, respectively.

Process reversible. Knowing the obfuscation tech-
nique or one of its standard processes can lead to complete
or partial reversibility of the obfuscated data set. Obfusca-
tion techniques with this property are generally stronger
than partial knowledge reversible techniques, but still
vulnerable to reverse engineering. An example of a
process reversible technique is

yi = fn(xi),

where xi and yi denote entry i in the original and obfus-
cated data set, respectively, and the inverse of function fn
exists and is computable. In this situation, knowing fn is
sufficient to reverse-engineer the obfuscated data.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 35

Figure 1. Data obfuscation properties. The three main properties—
reversibility, specification, and shift—are each further defined by
various subproperties.

Data-obfuscation properties

Mean-shifting

Absolute

Shift

Constant Random

Symmetric Asymmetric

Overlapping

Non-overlapping

Mean-preserving

Symmetry Overlap

Specification

Relative

Reversibility

Partial-
knowledge
reversible

Process
reversible

Combination
reversible

Irreversible

Data Obfuscation

Most obfuscation techniques invoke pseudorandom
number generators (PRNG) to generate random se-
quences. Knowing the sequence generation’s random
number seed and the PRNG facilitates the data set’s re-
verse engineering. This special category of process re-
versibility is called random number reversibility. This prop-
erty indicates that the original data set can be
reverse-engineered if attackers know the PRNG and
the obfuscation process. Once they obtain the sequence
of random numbers, they can easily reconstruct the
original data set by performing simple mathematical
operations on the obfuscated data. The key item in pre-
serving the data set’s privacy lies in the PRNG’s com-
plexity. It is therefore essential that users avoid PRNGs
that are easy to crack, protect the seed used to obfuscate
a data set, and strictly avoid common seed values (such
as 0 and 1). Examples of process reversible data obfusca-
tion techniques are

yi = xi + rv, and
yi = xi * rv,

where xi and yi denote entry i in the original and obfus-
cated data set, respectively, and rv is a random variable. In
this case, if an attacker obtains the random number se-
quence, the entire original data set is compromised.

Combination reversible. Obfuscation techniques with
this property can be reverse-engineered if attackers have
partial knowledge of the data obfuscation technique and
the original data set. In this case, even if an attacker ex-
ploits the PRNG’s weakness, for example, they’d still
need to know some original data characteristic to obtain
the original data set. An example of such an obfuscation
technique is

yi = xi*(1 + rv) + constant,

where xi and yi denote entry i in the original and obfus-
cated data set, respectively, and rv is a random variable. In
this case, attackers could combine knowledge of the ran-
dom obfuscation process (including the PRNG and seed)
with some original data values to reverse-engineer the
constant and obtain the entire original data set.

Irreversible. Techniques in this category are impossible
to reverse-engineer. Data obfuscated with such tech-
niques can’t be mapped back to their corresponding orig-
inal values. Deterministic data obfuscation techniques that
result in a many-to-one mapping of original data entries
to obfuscated data entries are irreversible. For example,

where x is the original data sequence and [xj, …, xk] is a
subsequence of x. Here, the output for all subsequence val-
ues is the subsequence mean. With irreversible techniques,
there is an inherent loss of information. The natural anal-
ogy here is to lossy compression techniques, which make it
impossible to exactly recover the original data. The obvi-
ous disadvantage is that the original data set must be stored,
as it cannot be regenerated even by authorized users.

Other properties
The specification and shift properties define specific
properties within an obfuscation mechanism. With data
anonymization, specification and shift refer to the inter-
val’s size; with data swapping, they refer to the distance
between the nearest neighbors for swap selection. Specif-
ically, the specification property defines the obfuscation
parameter and the shift parameter defines the obfuscation

y y k y y x k jj j ik k i
j

k
= = = = = − ++ − ∑1 1 1/ (),

36 IEEE SECURITY & PRIVACY ■ NOVEMBER/DECEMBER 2004

Figure 2. Symmetry in random obfuscations. (a) Symmetric curves with normal distribution (solid line) and uniform distribution
(dashed line). (b) Asymmetric curves with exponential distribution (solid line) and arbitrary distribution (dashed line).

Probability

D’

D’Min D’MaxD’�(a) D’Min D’MaxD’�

Probability

D’

(b)

Normal distribution
Uniform distribution

Exponential distribution
Arbitrary distribution

Data Obfuscation

process. The specification property is further categorized
as either absolute or relative:

• Absolute obfuscation implies that the magnitude of
change to be introduced to the datum is independent of
the datum’s magnitude.

• Relative obfuscation gives a percentage by which the data
should be changed.

The shift property describes the nature of the obfusca-
tion process. Data can be obfuscated by a constant or ran-
dom amount:

• A constant obfuscation changes each datum in a data set by
the same specified amount, whether absolute or rela-
tive.

• A random obfuscation will change different data items by
different amounts specified in statistical terms.

Random obfuscation’s properties all involve reasoning
about the probability density function (pdf) of a given
obfuscation’s random distribution. Although we can use a
wide range of pdf functions with random data obfusca-
tion, our discussion applies to the overall category. In all
cases, the pdf is truncated at D´ � [D´min, D´max], because
most applications require a bounding on the largest possi-
ble data perturbation. In implementation terms, if a pdf
generates a value outside this range, the system calls its
random number function repeatedly until the value fits
within the range.

Random obfuscation has two sub-properties: symme-
try and overlap. The obfuscation is symmetric if it uses a
symmetric pdf , and is asymmetric otherwise. Figure 2a
shows symmetric curves, one using a normal distribution
and another using a uniform distribution. Figure 2b
shows asymmetric curves, one using an exponential dis-
tribution and the other using an arbitrary one.

Overlap indicates the range [D´min, D´max] that D´ can
be mapped onto, as Figure 3 shows (the figure doesn’t

show pdfs as they are not germane to overlap definitions).
A nonoverlapping random obfuscation is such that D
�[D´min, D´max], that is, D´ cannot equal D. Consider, for
example, the transformation that truncates such that D’ �
[D´ min, D) or D´ � (D, D´max], which is a minimum per-
turbation nonoverlapping obfuscation.

Overlapping obfuscations differ in their mean preser-
vation—that is, whether the arithmetic mean of the trun-
cated distribution, D´�, equals D. As Figure 3a shows, a
mean-preserving obfuscation will have D´� = D. Figure
3b shows a mean-shifting obfuscation, in which the trun-
cated distribution doesn’t equal D.

This set of data obfuscation properties is rich enough
for a wide range of application programs, and all of them
can be implemented. Any function can be devised with a
random obfuscation, but the resulting properties are un-
known in most cases. Also, we could derive further prop-
erties for a given random distribution, but that is beyond
the scope of this article.

Example primitives
As Table 1 shows, we use various symbols to specify several
primitives that can implement the obfuscation properties.

Constant primitives. A constant obfuscation primitive
family is fairly simple:

D´ = Constant_ob (D, exact_shift) = D + exact_shift,

in which exact_shift is the amount to obfuscate by, which
can be relative (a percent) or absolute (a fixed amount).
By definition, constant obfuscation shifts all data set items
by this same relative or absolute specification; there are no
random variables.

Random primitives. Another simple primitive, the
random obfuscation family makes various changes to
data set items, with a known arithmetic mean and
bounded change:

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 37

Figure 3. Mean preservation in overlapping random obfuscations. (a) A mean-preserving obfuscation (D’� = D). (b) A
mean-shifting obfuscation (where D’� � D).

Probability Probability

D’
D’Min D’MaxD’�(a) D’Min D’MaxD’�

D’
(b) D

Original data
distribution
Obfuscated data
distribution

Original data
distribution
Obfuscated data
distribution

Data Obfuscation

38 IEEE SECURITY & PRIVACY ■ NOVEMBER/DECEMBER 2004

D´ = Random_ob (D, scalar, dist, dist_params) = D +
(Y (dist (dist_params)) * scalar).

Here, scalar could be constant, relative (max�chng
or min�chng), or based on min_shift/max_shift. It
scales the distribution—which Y truncates to [0, 1]—
to the appropriate range. We can construct random
primitives to apply their statistical shifting across a
whole data set or with a given statistical shift for each
data item. The former approach shifts statistics across
the entire data set, while the latter shifts multiple obfus-
cated copies of the same data item with the given statis-
tical parameterization.

Combination primitives. Generally, we can compose all
primitives independently and know, a priori, the result-
ing D´´�. However, it can be useful to explicitly combine
primitives. While composing the above primitives can
desensitize them, composition also allows the direct spec-
ification of the total obfuscation’s parameterization. If we
compose multiple primitives, for example, we can derive
D*� given the obfuscation algorithms and their parame-
ters. However, even for a given list of obfuscation algo-
rithms, deriving how they should be parameterized given
the desired resulting D*� can be computationally in-
tractable or even impossible, depending on the set of
primitives.

Obfuscating data structures
So far, we’ve mainly discussed obfuscation on a single
datum, or at most on a data array in which each item
might be randomly obfuscated to different degrees
(with well-chosen bounds and statistical properties) to
make reverse engineering more difficult. However,
these obfuscation approaches also directly extend to
many different data structures. Such an extension offers
great opportunities to take advantage of each data struc-
ture’s semantics.

For example, in a simple data structure with fields for
coordinates in two or three dimensions, multiple fields
constitute a coordinate. We can take advantage of this by

obfuscating the fields in the same way, or in different
ways that take advantage of the application’s semantics.
In the latter case, the importance of one dimension,
such as altitude, might vary, and thus we might obfus-
cate it more or less than the other two dimensions. Al-
ternately, data semantics might require that we obfus-
cate multiple data items while considering others in the
set. Take, for example, RGB, which specifies a color by
its components. In some cases, we’ll want to change all
three at once, because a user’s perception of the overall
change must account for the current values of all three
and change them appropriately. In other cases, we’ll
want to perform a nonlinear transformation on an RGB
(or digitized audio) structure, because the visually per-
ceived change is not linear with the given value’s
change, and a data structure containing an image can
obfuscate pixels based on adjacent pixels’ values. It’s also
possible to obfuscate using an application’s general se-
mantic information, and perhaps even use metadata
(from the data structure or a remote database) to identify
the object that a group of adjacent pixels represents to
suggest obfuscation approaches. Such an approach min-
imizes data perturbation, while being difficult or virtu-
ally impossible to reverse-engineer.

Another example comes from the network security
realm, where it can be useful to share computer attack and
intrusion data both for real-time analysis and post facto
forensics. However, many companies are hesitant to share
such data because it identifies them (via IP addresses, for
example) as having suffered computer security failures,
which can be bad for business. The alert logs produced by
intrusion detection systems and other alert mechanisms
contain sensitive information about the compromised
system. Such information includes the source and desti-
nation IP addresses and the system configuration, which
are likely targets for privacy invasion.5 To address this, we
can obfuscate IP addresses that are stored as simple un-
signed integers. Depending on the obfuscation approach,
we can preserve both the company’s anonymity and the
properties that make the data useful for data mining and
attack and forensic analyses.

SYMBOL DEFINITIONS

exact_Pct Exact percent of change based on original D. This primitive is used when max_Pct and min_Pct are not used; it has a

range of 0 to 100.

min�chng D*(min_Pct/100).

max�chng D*(max_Pct/100).

exact�chng D*(exact_Pct/100).

X(-1,1), Y(0,1) Random variables that truncate their distribution with the specified ranges. Z can be either X or Y.

dist A given distribution, such as normal.

dist_params Any parameters that the given distribution requires to specify the random variable’s shape.

Table 1. Symbols for obfuscation primitives.

Data Obfuscation

Obfuscating IP address properties is an open research
area, but we can offer a few initial examples. In most sit-
uations, the obfuscation must preserve IP-specific in-
formation embedded or inherent in the integer—such
as its class (A, B, or C) and subnet size—while trans-
forming higher bits to blur the company’s identity. Such
transformations might need to preserve other proper-
ties, such as the number of hops from the company to an
Internet backbone provider and the company’s different
operating systems.

Many scientific applications can use data structure ob-
fuscations, representing large arrays using sparse represen-
tations that store the indices along with the data. Obfus-
cating the indices can provide much greater security, but
for some applications, the data set becomes unusable.
Also, in general, indices must be obfuscated differently
than the datum they reference. Databases often store
records using trees, and in many cases we can change the
tree’s shape (a kind of non-numerical obfuscation) while
preserving the data set’s usability.

Implementation
There are many ways to implement data obfuscation. For
floating-point numbers, bit-level manipulations can be
performed on the mantissa to provide relative changes.
This provides less granularity than arithmetic computa-
tions, but it can be implemented in hardware with a
much smaller footprint than a general floating-point
arithmetic module, and it’s also potentially faster.

In many situations, obfuscating every datum in a data
set is undesirable and wastes resources. It can also degrade
security. Consider the situation in which a data item is
obfuscated, but an adversary can accurately derive its
value. An example of this is the precise position of a fixed
and publicly visible structure, such as a water tower. In
this case, an adversary can verify the position with great
accuracy. Attackers can use this position data to deter-
mine how much the datum has been obfuscated. By col-
lecting such information about multiple obfuscated
items, adversaries might ascertain the obfuscation algo-
rithm and its parameterization. They could thus de-
obfuscate the other data items in the data set that could
not be independently verified.

Experimental evaluation
We now provide an experimental evaluation of some data
obfuscation mechanisms.

Performance metrics
To measure an obfuscation technique, we can use metrics
for reversibility, usability, perturbation, and performance.
Reversibility metrics let us quantify the reverse-engineering
capability of obfuscated data. We define four metrics for re-
versibility, based on different aspects of the data retrieval:

• Targeted individual data retrieval denotes the minimum
amount of information necessary and sufficient to re-
verse any individual entry in a given obfuscated data set.

• Subset reversal defines the minimum amount of infor-
mation necessary to reverse-engineer a subset of the
obfuscated data set.

• Complete reversal denotes the information needed to
completely reverse obfuscated data.

• The time complexity of reverse engineering a data set de-
termines an encryption mechanism’s strength; we can
use it to measure reversibility as well.

Usability metrics describe how usable the obfuscated
data set is. Such metrics limit how much a data item can
be obfuscated while retaining certain statistics on the set
and its subsets. Perturbation metrics measure how much the
data actually shifts compared to the target shift amount.
Application-level perturbation measures the perturba-
tion’s impact on the application using the perturbed data.
Finally, performance metrics measure how a specific obfus-
cation performs in terms of classical measures such as ex-
ecution time, throughput, and so on.

Experiments
We evaluated the execution time of several primitives,
running the results on various desktop computers using
Windows 2000 or Windows XP. We implemented two
different tests with two different obfuscation methods.

In the first test, we obfuscated an array of randomly gen-
erated 32-bit floating-point numbers using a straight math-
ematical implementation of the primitives. We performed
the random data obfuscation tests using a normal distribu-

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 39

TEST MACHINE PIII 450MHZ 256 RAM AMD 1.4GHZ 256 DDR AMD 1.8GHZ 512 DDR RAM
PRIMITIVES WINDOWS 2000 RAM WINDOWS XP PRO WINDOWS XP PRO

Constant_ob() (absolute) 0.39 �s 0.10 �s 0.06 �s

Constant_ob() (relative) 0.47 �s 0.12 �s 0.08 �s

Random_ob() (absolute) 12.17 �s 3.03 �s 2.36 �s

Random_ob() (relative) 12.24 �s 3.04 �s 2.37 �s

Table 2. Random data obfuscation results.

Data Obfuscation

40 IEEE SECURITY & PRIVACY ■ NOVEMBER/DECEMBER 2004

tion and parameters X(-1,1)Y(0,1). Table 2 shows the re-
sults. Clearly, the basic primitives’ execution time is insignif-
icant: We can obfuscate a one-million-element data set in a
few seconds with state-of-the-art processors. We’re cur-
rently evaluating more complex obfuscation mechanisms.

In our second test, we didn’t implement the primitives
using an arithmetic formula; we produced the desired
obfuscation by directly manipulating specific bits in the
floating-point number’s mantissa. As expected, the math-
ematical implementation was significantly faster than the
bit-level manipulation (we omit the actual numbers here
for brevity’s sake). This is due to overhead incurred by the
table lookup that we used to determine which mantissa
bits to manipulate to induce the desired change. We
haven’t yet optimized the algorithm for this table lookup;
once we do, we expect execution times to improve. We
also expect that this bit-manipulation approach to obfus-
cation will excel when implemented in hardware. Such
an implementation should prove faster and, more impor-
tantly, it should be much smaller and potentially harder to
reverse-engineer than the current implementations.

A lmost all of our future research involves working
toward a broad and fundamental understanding

of the inherent trade-offs between security, usability

for specific applications, reversibility, and imple-
mentability. A key research area will be to evaluate a
sufficiently large set of random distributions to bet-
ter understand their inherent reversibility as well as
their usability in different application domains. An-
other key area is to try to provide statistical proper-
ties other than the arithmetic mean (such as vari-
ance, for example). These properties have the
potential to greatly increase the obfuscated data’s us-
ability to some applications, but—except for well-
chosen distributions and parameterizations
thereof—they can rarely be implemented.

Acknowledgments
The US Air Force Research Laboratory’s Software Protection Initiative
funds this research through contract F33615-02-C-1292. We thank Deb
Frincke for suggesting intrusion data sharing as a data obfuscation applica-
tion and Marty Stytz for suggesting simulation data sharing and for mak-
ing numerous other suggestions on our research. We thank Alan Genz and
Murali Medidi for their comments on data obfuscation properties.

References
1. R. Agrawal and S. Ramakrishnan, “Privacy-Preserving

Data Mining,” Proc. ACM SIGMOD Conf. on Manage-
ment of Data, ACM Press, 2000, pp. 439–450.

2. S. Gomatam and A. Karr, “Distortion Measures for Cat-

Managing anonymity while sharing knowledge to servers

(Masks), is an integrated Web-based tool that addresses Web

users’ privacy concerns while also considering their desire for

personalized Web services.1 Masks addresses privacy at the data-

collection level, working as a proxy that provides users with a tem-

porary identification for interacting with a Web site The Lucent

personalized Web assistant (www.bell-labs.com/projects/lpwa) lets

users create and use unique identities to register with Web sites that

provide personalized services, while keeping their true identity

private. Onion (www.onion-router.net) is a Web-based system that

resists packet analysis and snooping by removing identification infor-

mation from a data stream’s routing information. These services

provide anonymity of Web usage, but don’t operate on data.

Data encryption complements data obfuscation in that it

secures the data only against unauthorized users, offering authen-

ticated users the original data. However, data encryption doesn’t

provide different data protection levels to different user categories.

Privacy homomorphisms are a subcategory of encryption algo-

rithms that allow additive and multiplicative computations on

encrypted data.2 Researchers have devised several PH techniques

to provide different computation capabilities. However, all existing

PH encryptions have been broken by chosen-plain-text attacks and

cipher-text attacks3 (an encryption is insecure to chosen-plain-text

attacks when a clever choice of the plain text to be encrypted

reveals key information; in a cipher-text attack, selectively choosing

cipher-text to be decrypted can reveal the decryption key). In such

cases, an end user with access to a part of the original data set can

crack the key and retrieve all of the sensitive data.

Finally, obtaining encrypted data statistics requires a third

party to perform the statistical computations, which leads to the

need for more trusted resources.4 For trend analysis and statistical

and inference-based computations from data sets, encryption-

based security schemes add complexity, yet don’t guarantee

absolute data protection.

References

1. L. Ishitani, V. Almeida, and W. Meira, “Masks: Bringing Anonymity and Per-

sonalization Together,” IEEE Security & Privacy, vol. 1, no. 3, May/June 2003,

pp. 18–23.

2. R. Rivest, L. Adleman, and M. Dertouzos, “On Data Banks and Privacy

Homomorphisms,” Foundations of Secure Computations, eds. R.A. DeMillo

et al. Academic Press, 1978, pp.169–179.

3. F. Bao, “Cryptanalysis of a Provable Secure Additive and Multiplicative Pri-

vacy Homomorphism,” Int’l Workshop Coding and Cryptography, 2003;

www.i2r.a-star.edu.sg/icsd/publications/BaoFeng_2003_WCC.pdf.

4. J. Domingo-Ferrer, “Privacy Homomorphisms for Subcontracting Statisti-

cal Computation,” Proc. Third Int’l Seminar Statistical Confidentiality, Euro-

stat-Statistical Office of the Republic of Slovenia, 1996, pp. 184–191.

Personalization and encryption methods

egorical Data Swapping,” tech. report 131, US Nat’l Inst.
Statistical Sciences, Jan. 2003.

3. L. Sweeney, “K-Anonymity: A Model for Protecting Pri-
vacy,” Int’l J. Uncertainty, Fuzziness and Knowledge-Based
Systems, vol. 10, no. 5, 2002, pp. 557–570.

4. D. Denning and M. Schwartz, “The Tracker: A Threat
to Statistical Database Security,” ACM Trans. Database Sys-
tems, vol. 4, no. 1, March 1979, pp. 76–96.

5. P. Lincoln, P. Porras, and V. Shmatikov, “Privacy-Preserv-
ing Sharing and Correlation of Security Alerts,” Proc. 13th
Usenix Security Symp., Usenix Assoc., 2004, pp. 239-254.

David E. Bakken is an associate professor of computer science
at Washington State University in Pullman, Washington. His
research interests include distributed computing, middleware,
fault tolerance, and security. He is the lead principal investiga-
tor on the GridStat project, which is developing next-generation
communication infrastructures for the electric power grid and
other critical infrastructures. He is a member of the IEEE and
ACM. Contact him at bakken@wsu.edu.

Rupa Parameswaran is a PhD student at the School of Electrical
and Computer Engineering at the Georgia Institute of Technol-
ogy, Atlanta, where she participates in a Raytheon-sponsored

pro-
project to develop a fault-injection tool for middleware applica-
tions. Her research is focused on developing quantifiers for
privacy-preserved sensitive data sets; her general interests include
security, privacy, data mining, and middleware reliability. She
received an MS in electrical and computer engineering from Geor-
gia Institute of Technology. She is a student member of the IEEE
and the ACM. Contact her at rupa@ece.gatech.edu.

Douglas M. Blough is a professor of electrical and computer engi-
neering at the Georgia Institute of Technology. His research inter-
ests include distributed systems, dependability and security, and
wireless ad hoc networks. He was program co-chair for
the 2000 International Conference on Dependable Systems and
Networks and the 1995 Pacific Rim International Symposium on
Fault-Tolerant Systems. He was associate editor for IEEE Transac-
tions on Computers from 1995 through 2000, and is currently
associate editor for IEEE Transactions on Parallel and Distributed
Systems. Contact him at doug.blough@ece.gatech.edu.

Ty J. Palmer is an independent consultant in Selah, Washing-
ton. His research interests include data obfuscation and mid-
dleware. Contact him at win270_64@hotmail.com.

Andy A. Franz is a system programmer in Selah, Washington.
His research interests include data fusion and voting in middle-
ware and data obfuscation. Contact him at druid_galiphile@
yahoo.com.

Data Obfuscation

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 41

Data obfuscation is applicable in many areas, including those

involving highly sensitive information that must be dissem-

inated. Examples here include medical records, electronic billing

transactions, and military information.

Medical records
When dealing with a patient’s medical records, data privacy is of

the utmost concern. This requirement fundamentally conflicts with

the scientific method’s basic repeatability needs, which require that

research results be independently validated and extended. Even in

the most controlled circumstances, disseminating patient medical

records greatly increases the odds of data misuse. In particular,

someone who obtains a data set can identify a particular indi-

vidual’s medical record if he or she can independently acquire even

a few fields with relatively high precision. Judicious medical record

obfuscation can preserve data usability for medical research while

preserving data anonymity, and thus thwart such attacks. It can

work because many medical studies use large collections of confi-

dential patient records, cross-correlating the arithmetic mean (and

possibly other statistical properties as well) of different data items

such as blood pressure, cholesterol, time spent exercising, and the

amount of fat in a person’s diet. In other cases, small statistical per-

turbations of each data item are within experimental tolerances.

Billing transactions
Obfuscation will also be useful in electronic billing transactions, such

as electronic transponder-based toll collection for toll roads.1 This

business operates using tollbooth sensors to track users’ individual

transponders and bill them accordingly. The tollbooth operator

wants to preserve transaction privacy so its customers don’t feel like

“Big Brother” or anyone else is tracking their movements. However,

credit-card issuers might purchase tollbooth operator’s information

and cross-reference it with their billing statements to find tolls

charged to a supposedly anonymous transponder company and

thereby determine a particular customer’s driving habits.

Obfuscating the data contained in the billing statements before

selling it to a credit-card issuer would prevent data from being cross-

referenced to driving habits. It would thus protect the driver’s

privacy, while at the same time allowing the tollbooth operator to

release the data, which would still be useful for many kinds of (non-

invasive) aggregation and data mining.

Military information
Military weaponry is another highly sensitive area that could

benefit from data obfuscation. Obfuscating statistical information

about military-grade weapons’ capability and technical parameters

might make it possible for third parties not holding top security

clearance—such as academics and consultants—to demonstrate a

weapon’s effectiveness and feasibility without releasing the data’s

full accuracy and thus its full military value. This technique would

help prevent an adversary from using the distributed information

to develop the weapons or countermeasures against them.

Reference

1. J. Warrior, E. McHenry, and K. McGee, “They Know Where You Are,” IEEE

Spectrum, vol. 40, no. 7, July 2003, pp. 20–25.

Data obfuscation examples

