
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 2, FEBRUARY 2020 377

STEREOS: Smart Table EntRy Eviction for
OpenFlow Switches

Hemin Yang, George F. Riley, and Douglas M. Blough

Abstract— Software-defined networking (SDN) is fundamen-
tally changing the way networks operate, enabling programmable
and flexible network management and configuration. As the de
facto standard southbound interface of SDN, OpenFlow defines
how the control plane interacts with the data forwarding plane.
In OpenFlow, flow tables play a significant role in packet
forwarding. However, the size of the flow table is limited due
to power, cost, and silicon area constraints and capacity-limited
tables cannot hold all of the active flows in medium-to-large-
scale SDN networks. Thus, when a flow table reaches capacity,
an intelligent eviction strategy, which efficiently manages the
limited flow table resource, is critical. In this paper, we propose
Smart Table EntRy Eviction for OpenFlow Switches (STEREOS),
which uses machine learning to classify flow entries as active or
inactive and forms the basis for intelligent eviction. Trace-driven
simulations demonstrate that STEREOS increases flow table
usage by more than 50% and reduces incorrect flow entry
evictions by up to 78%, compared with the dominant Least
Recently Used eviction policy. Moreover, packet-level simulations
of a datacenter network demonstrate that STEREOS can greatly
reduce the control overhead, increase overall network throughput
by 19%, and reduce packet loss rate by 70%.

Index Terms— Flow table eviction, machine learning,
OpenFlow switch, software-defined networks.

I. INTRODUCTION

SOFTWARE Defined Networking (SDN) is widely
regarded as a revolutionary technology due to its capa-

bility to create programmable, flexible and agile networks
while reducing costs. Google, Amazon, Facebook, and other
organizations have heavily researched and invested in SDN
for their data center networks. For example, Google leveraged
SDN to build its Jupiter network, which achieved a capacity
increase of 100× [1], and Microsoft used SDN to improve
its hyperscale data center connectivity, achieving substantial
reductions in capital and operating expenses [2].

The core idea of SDN is to separate the control plane from
the forwarding/data plane in switches. This makes network

Manuscript received June 20, 2019; revised October 14, 2019; accepted
November 6, 2019. Date of publication December 12, 2019; date of current
version February 19, 2020. The article was presented at the IEEE ICCCN
2018. (Corresponding author: Hemin Yang.)

H. Yang was with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332 USA. He is now with
Microsoft, Redmond, WA, USA.

G. F. Riley, deceased, was with the School of Electrical and Computer
Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA.

D. M. Blough is with the School of Electrical and Computer Engineer-
ing, Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail:
doug.blough@ece.gatech.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2019.2959184

operations programmable and accelerates innovations through
SDN abstractions. Most SDN implementations use the Open-
Flow protocol [3] as the communication interface between
control and data planes. The kernel of OpenFlow is a packet
processing pipeline consisting of several flow tables, which
contain flow entries that are used to match and process incom-
ing packets. Due to power, cost, and silicon area constraints,
the flow table size is a limitation for networks with a large
number of flows. As reported by Lu et al. [4], the Broadcom
chipset, which is widely used in commercial switches, can
accommodate 2000 flow entries. On the other hand, flow
arrival rates can reach 10,000 flows per second per server rack
in data centers [5]. Hence, it is extremely important to manage
flow tables efficiently, and the primary tool for this is accurate
identification of inactive flows when a flow table has reached
capacity and an existing flow must be evicted.

In this paper, we propose a new approach to flow entry
eviction, which is based on machine learning. Patterns of
active and inactive flows in a particular network environment
are learned in a training phase and the learned models are
then applied to the operational flows in the network. Based on
multiple network traces from different real networks, we study
which machine learning models are well suited for this prob-
lem and we demonstrate the efficacy of those models in the
associated networks. The paper’s contributions include:

1) identification of specific features of flows that are impor-
tant for active/inactive flow classification,

2) the Smart Table EntRy Eviction for OpenFlow
Switches (STEREOS) prediction mechanism, which
trains an offline machine learning (ML) model to predict
the probability that a flow entry is inactive; this can be
used by OpenFlow switches to more accurately evict
inactive flow entries once a flow table has reached
capacity, and

3) detailed case studies that address practical problems in
the implementation of STEREOS such as ML model
selection, ML model size trade-off, overhead, and fea-
ture quantization, which provide a roadmap for imple-
mentation of STEREOS in real SDN networks.

II. RELATED WORK

Machine learning is a promising approach to optimize
network operations. Clark et al. [6], proposed to introduce a
knowledge plane into the Internet to enable machine learning
applications 16 years ago but knowledge plane prototypes have
still not appeared, due mainly to the decentralized Internet

0733-8716 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 16,2020 at 15:34:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0803-7647

378 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 2, FEBRUARY 2020

control structure. However, SDN networks, have centralized
network controllers and typically operate at the level of a
single organization, which facilitates collection of the data
necessary to train machine learning models. To date, machine
learning techniques have been applied to address several
networking problems in SDNs, e.g. routing optimization [7],
[8], management of resources such as network bandwidth and
compute capacity [9], [10], and security [11], [12].

The specific problem studied herein, flow entry eviction,
is one aspect of flow table management in SDNs. OpenFlow
currently provides three mechanisms for flow table manage-
ment: flow expiration timeouts, proactive flow entry deletion,
and flow entry eviction [3]. To date, only a few papers
have studied machine-learning-based flow table management.
Li et al. [13], proposed to use Q-learning for the selection of
flow expiration timeout values. Yang and Riley [14] employed
machine learning to learn from historical flow entry removal
statistics how to predict when a flow entry will be last used.
As for flow entry eviction, Kannan and Banerjee [15], built a
Markov based learning predictor that captures the probability
of transitioning between different intervals and evicts the flow
entry in the state from which the transition probability is
the least. However, their approach assumes that flow arrivals
follow a Poisson distribution, which is not necessarily true
in practice. This paper is a significant extension of our
prior work in which we first proposed network-data-based
machine learning for switch-controlled on-demand flow entry
eviction [16].

Most prior work on switch-controlled on-demand flow
entry eviction has studied traditional (not machine learning)
approaches, e.g. [17]–[19]. Both [18] and [19] are based on
categorizing flows as “elephant” flows, which are small in
number but represent a large fraction of traffic volume, and
“mouse” flows, which are high in number but carry little data.
The goal for both of these works is to reduce the number of
elephant flow evictions. The goal of our approach, and also that
of [17], is simply to minimize flow table misses, regardless of
flow type, since each flow miss causes an expensive switch to
controller communication in order to retrieve the appropriate
handling rule for the missing flow. Whereas [17] uses an
approach based on Bloom filters, ours is based on learning
the traffic patterns in a particular network context.

III. SMART FLOW TABLE ENTRY EVICTION

If an active flow entry is wrongly evicted from a flow table,
the switch has to query the controller to reinstall the flow
entry when the packets of the flow arrive in the future. This
re-installation not only incurs additional delays [20] but also
increases the controller’s workload. Furthermore, evicting an
active TCP flow entry can seriously degrade the performance
of TCP connections, because it may result in packet loss
and congestion window shrinkage for all TCP flows that
share the same switch buffer [21]. Therefore, minimizing
incorrect flow entry evictions is critical to maintaining network
performance.

We approach this problem by considering how to train
a binary classification model that can label each flow as

Fig. 1. Overview of STEREOS.

either active or inactive. Our proposed approach, referred to
as STEREOS, is shown in Fig. 1. The first phase is offline
training to generate the classification model, and the second
phase is run-time use of the trained model to perform flow
table eviction. To do the offline training, packet traces from
a few OpenFlow switches in the target network are captured
with a tool such as Wireshark. These traces are used to extract
features and labels to form the training dataset. The dataset
is then used to train the offline model including tuning its
hyperparameters. To implement STEREOS in a real network,
the parameters of the trained model would then be distributed
to the OpenFlow switches by the controller. Lastly, every
OpenFlow switch would apply the trained model to identify
and evict inactive flow entries. The model training could be
performed by a helper device attached to the network [5] or
by the controller itself.

Deploying an improved eviction algorithm will require that
SDN switches be modified, because current switches use LRU
replacement as the default. Machine learning models of the
type considered herein have been shown to have efficient
FPGA implementations [22], [23], and our results show that
these models provide substantial benefits over LRU across a
range of scenarios. Thus, these results provide motivation to
designers of future switches to consider implementing more
advanced eviction algorithms such as those proposed herein.

Offline training with online eviction can be periodically
updated (e.g., every 10 hours) in order to adapt to changes
in the underlying traffic pattern. Here, we do not use online
classification because we can only get ground truth labels
(inactive or active) through a long time observation (at least
tens of minutes). Our trace-driven evaluations reported in
Section IV indicate that flow characteristics in data center
environments do not change rapidly making the offline training
approach feasible. For example, with one set of traces covering
a 22-hour period, we trained a model based on the first two
hours of the traces and then very accurately identified inactive
flows during the remaining 20-hour duration.

A. Offline Training: Data Collection

In order to train a model for classifying flow table entries
as active or inactive, we need training data on flows. Every
data point in the training data set should contain two parts:
flow features and a label (active or inactive). The features

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 16,2020 at 15:34:20 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: STEREOS 379

TABLE I

FEATURE LIST

are used to characterize the state of the flow from which the
data point was generated. In this study, we use the features
listed in Table I. tidle captures the time since the last packet
was seen from the flow, and a larger tidle generally means
the flow entry is more likely to be inactive. tia and tis
characterize the packet inter-arrival time distribution of the
flow. We also capture the lengths of the last Npkt packets
in the li features. Thus, the feature vector has the form
v = (1tcp, tidle, tia, tis, l1, l2, · · · , lNpkt) ∈ R

Npkt+4, for each
data point.

Algorithm 1 Dataset Generation
Require: Packet trace, tmax, Nmax, tinterval, Npkt, tthreshold

1: for TCP/UDP packet p whose arrival time tp ≤ tmax do
2: If the next packet belonging to the flow containing p will

arrive after tthreshold or p is the last packet, label the flow
as inactive. Otherwise, label it as active.

3: if p cannot match any flow entry then
4: if the size of the flow table is Nmax then
5: Output the features and label of each flow entry which

is recorded ≥ tinterval ago or updated;
6: Set each flow entry as non-updated and trecord of

each flow entry as tp;
7: Evict a random flow entry;
8: end if
9: Insert the flow entry subject to p in the flow table.

10: Set the flow entry as updated.
11: else
12: Update the features of the flow entry referred by p
13: end if
14: end for

With these features, we can generate a training dataset from
real network packet traces. The generation process is described
in Algorithm 1, which simulates the arrival of packets and
updates the feature vector of the corresponding flow entry
when a packet arrives. The algorithm also simulates flow entry
installation and eviction. As packets arrive, flow entries are
installed in the flow table. Whenever the flow table reaches its
capacity, the features and label of every flow entry are output
as a data sample (see line 5). The algorithm labels a flow
entry as inactive (positive) when there is no packet from the
flow in the next tthreshold length of time in the trace. This is
reasonable if tthreshold is long enough (e.g., 1 hour).

Note that all identified features are time-varying except for
1tcp. In particular, tidle for a flow keeps changing even if
there are no packet arrivals for the flow. Thus, there could
be thousands of data samples which are exactly the same

except that their tidle values are slightly different. This massive
redundancy of data samples would not only provide no extra
information to the ML model but it could also introduce bias in
the trained model due to the frequency of redundant samples in
the data set. This would also increase the computational over-
head of training. To prevent these negative effects, we employ
a variable, trecord, to record the last time that the features and
label of a flow entry were output as a data sample and we do
not allow a new data sample to be output for that flow until
at least time trecord + tinterval (see line 5).

Another issue is which policy (e.g., random, LRU, FIFO)
to use for flow entry eviction when the flow table over-
flows during training dataset generation. In machine learning,
we would like the training data and test data to come from
the same underlying distribution so that the trained model can
achieve low generalization error. The LRU and FIFO policies
both have some preference about which flow entry should be
evicted when the flow table overflows. These preferences are
clearly different from the learned ML policy, which would
mean that a training dataset generated with LRU or FIFO
policy would have a very different distribution from the testing
one (used by the learned ML policy). However, the random
eviction policy has no preference about which flow entry
should be evicted, and thus the distribution of the training
dataset generated by the random policy will be closer to that of
the learned policy. Therefore, to generate the training dataset,
we employ the random eviction policy (see line 7).

B. Offline Model Training: Model Tuning

With the collected dataset, we need to select an appropriate
machine learning algorithm and tune its hyperparameters to
achieve the best performance. Many algorithms can be used
for classification problems, such as nearest neighbor, support
vector machine, decision tree, random forest, and multiple
layer perception [24]. To select the best machine learning algo-
rithm for STEREOS and tune its hyperparameters, we need
to select an appropriate performance metric. There are many
performance metrics for classification, such as classification
accuracy, recall, and F1-score [24]. For flow entry eviction,
on one hand, we want to minimize false positives (i.e., active
flows misclassified as inactive) to minimize wrong evictions.
On the other hand, if an inactive flow entry is misclassified as
active, then it might never be evicted, which wastes precious
flow table resources. Thus, false negatives should also be
minimized. Based on these observations, we use F1 score as
the performance metric because a high F1 score indicates that
both false negatives and false positives are low.

Based on F1 score, we use a K-fold rolling-origin cross
validation, as shown in Fig. 2, to evaluate the performance of
different machine learning models with different hyperparame-
ter configurations [25]. K-fold rolling-origin cross validation
is a common approach to fine-tune model hyperparameters
for time series data, where the whole time is first split into a
training range and a testing range such that all observations
in the training range occurred prior to any observation in
the testing range. The training range is further divided into
2K roughly equal time slices (K = 3 in Fig. 2). For fold

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 16,2020 at 15:34:20 UTC from IEEE Xplore. Restrictions apply.

380 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 2, FEBRUARY 2020

k = 1, 2, · · · , K , we fit a machine learning model with its
hyperparameters to the first K+k−1 time slices, and compute
its F1 score in classifying the (K+k)th part (a.k.a., validation
slice). Then we get the average F1 score of these K fold cross
validations. For every machine learning model, we do this
for many hyperparameter values and choose the values that
maximize the average F1 score.

C. Online Flow Table Eviction

Once offline training is finished, we apply the trained binary
classification model to online flow table eviction. The trained
model not only predicts whether one flow entry is inactive but
also gives the confidence of the prediction, i.e., the probability
that the flow entry is inactive. We rely on these probabilities
for online flow entry eviction, as shown in Algorithm 2. For
a binary classification model h trained from the collected
dataset, h(ve) gives the inactive probability for flow entry
e with feature vector ve, i.e., P e

inactive. When the flow table
reaches capacity, we apply the model h to calculate Pinactive

for the flow entries in the table and we use those probabilities
to choose a flow entry for eviction as discussed below.

Algorithm 2 Online Flow Entry Eviction
Require: Trained model h, Pmin, tinterval

1: while a packet p is arriving at the switch do
2: if p is matched with a flow entry ep then
3: update the feature vector vep associate with ep

4: else
5: if the flow table is overflow then
6: isEvicted← false
7: for every flow entry e in the flow table do
8: if ve is updated or P e

inactive is updated tinterval ago
then

9: P e
inactive ← h(ve)

10: if P e
inactive > 0.9 then

11: 1) evict the entry e
12: 2) isEvicted← true
13: break
14: end if
15: end if
16: end for
17: if not isEvicted then
18: e∗ = argmax{P e

inactive}
19: if P e∗

inactive > Pmin then
20: evict the flow entry e∗

21: else
22: evict the least recently used flow entry
23: end if
24: end if
25: end if
26: send flow setup request to the controller to install flow

entry for packet p
27: end if
28: end while

Calculating the inactive probabilities for all entries when
the flow table overflows is computationally intensive and

Fig. 2. K-fold rolling-origin cross validation (K = 3) for tuning the
hyperparameters of classification models.

would place a heavy burden on the limited CPU of the SDN
switch. Therefore, we set a threshold (0.9 in the experiments
reported in Section IV) on Pinactive, so that as soon as we find
an entry with Pinactive exceeding the threshold, we choose it
for eviction immediately without calculating the rest of the
Pinactive values.

In addition, it is inefficient to do classification on the same
flow entry again if its feature vector has only a small change.
For example, we do not want to classify a flow entry again if its
feature vector stays the same except that tidle is 1 millisecond
different. Therefore, similar to how we saved computation
time in the training phase, if there are no new packets for
a flow within a time tinterval, we do not reclassify it during
that time. This further reduces the computation burden at flow
table overflow time so that, in most cases, only flows that had
packets arriving at the switch since the last table overflow will
need to be reclassified.

The last issue is how to handle inactive flow entries that
are misclassified as active. For inactive flow entries, only tidle

will change as time elapses and it is possible that these entries
will remain misclassified for a long time. To make matters
worse, these inactive flow entries could accumulate over time
and occupy most of the flow table. To address this, if the
flow entry with largest inactive probability does not satisfy
P e∗

inactive ≥ Pmin, we evict the LRU flow entry. Otherwise,
the flow entry with maximum Pinactive will be evicted (unless
one with Pinactive > 0.9 was already evicted) (see line 20).
In this way, misclassified inactive flow entries, whose tidle

tends to be large, can be removed if there is no other flow
with a high inactive probability. Choice of Pmin is discussed
in Section IV.

D. Overhead of STEREOS

STEREOS requires storing feature values for every flow
entry in the flow table. The percentage overhead this incurs
depends on the storage requirement for these features and
the size of each flow entry. Each flow entry contains match
fields, priority, counters, instructions, timeouts, cookie, and
flags. The priority, timeout, cookie, and flag fields together
require 24 bytes. The match fields are described using Open-
Flow Extensible Match (OXM) format, and each OXM value
requires between 5 and 259 bytes. For the typical 5-tuple flow
match fields, 4 OXMs are required and 28 bytes are consumed.
Depending on which counters are included, the counter fields
consume from 4 to 24 bytes. The number of bytes occupied
by instructions depends on what actions are included. For
example, if one output action is included, then 24 bytes are
required. In summary, the storage requirement for one flow

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 16,2020 at 15:34:20 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: STEREOS 381

TABLE II

SUMMARY OF PACKET TRACES USED FOR CASE STUDY

entry varies but the classical simple 5-tuple output flow entry
requires 80 bytes. To achieve more precise control (which is
a common case in OpenFlow networks), more complicated
entries are necessary, which will require more bytes per entry.

The feature vector for STEREOS includes idle time, and the
packet lengths and inter-arrival times of the last Npkt packets.
If the time features are quantized with Bt bytes and packet
lengths are quantized with Bl bytes, then we require (Bt +
Bl)Npkt bytes to store the feature vector for each flow entry.
In Section IV, we discuss appropriate values of Npkt, Bt, and
Bl and we use those to quantify the overhead of STEREOS.

IV. CASE STUDIES

In this section, we present case studies based on four
real packet traces collected from university data centers.
UNIBS0930 and UNIBS1001 were collected on an edge
router of the campus network of the University of Brescia
on two working days, namely 09/30/2009 and 10/01/2009
[26]. They are composed of traffic generated by a set of
twenty workstations running the ground truth client daemon.
UNIV1 and UNIV2 were collected from two university data
centers by the authors of [5]. For simplicity, we only consider
TCP and UDP flows in the case studies. We summarize these
four packet traces in Table II.

A. Dataset Collection

We follow Algorithm 1 to collect datasets for the four packet
traces with 1K, 2K, and 4K flow tables (Nmax). The very
latest high-end commercial OpenFlow switches are equipped
with larger flow tables (e.g., 16K) to handle traffic demands
in today’s enormous data centers. However, the traces used
here are collected from campus networks around 10 years ago.
Therefore, we consider 1K, 2K, and 4K flow tables which
reflect hardware capacity from the same time frame and are
consistent with other studies such as [27]. The results shown
herein should generalize to larger networks with commensu-
rately larger numbers of flows and flow table sizes.

The generated datasets are summarized in Table III. Training
flows are flows that start in the training interval, (0, tmax),
of the packet trace, non-cross flows are flows that start after
tmax, and cross flows are flows that start before tmax and end
after tmax. We distinguish cross flows and non-cross flows so
that we can analyze whether the patterns learned from training
flows can be applied to flows that were not in the training
dataset, i.e. the non-cross flows. This is significant because
the benefits of STEREOS would degrade as time elapsed if
learned patterns did not apply to new (non-cross) flows.

TABLE III

SUMMARY OF GENERATED DATASETS

TABLE IV

HYPERPARAMETER SEARCH SPACE FOR MODEL TUNING

B. Offline Training Results

We use scikit-learn,pedregosa2011scikit,
an open source machine learning library in Python, for
selecting the best machine learning models. This library
provides many classification algorithms, as well as the APIs
for model selection based on cross-validation. As shown
in Fig. 2, each piece of the last five periods tmax/10 is a
validation set and the previous time’s data is the training
set. In this way, we can apply 5-fold rolling-origin-cross-
validation to tune the hyperparameters of different machine
learning algorithms.

We considered the seven classification algorithms shown
in Table IV. We did not consider the K nearest neighbor algo-
rithm because it requires storage of the whole dataset which
is not feasible for OpenFlow switches with limited memory.
We also did not consider the support vector machine (SVM)
algorithm because of its extremely high computational over-
head for training. Each of the considered algorithms has many
hyperparameters and we only considered some of the most
important ones, which are shown in Table IV. For all of the
hyperparameters not specified in Table IV, we used the default
values provided by the library.

The F1 scores for all possible combinations of the hyper-
parameter values specified in Table IV were evaluated by
5-fold rolling-origin-cross-validation. From this evaluation,

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 16,2020 at 15:34:20 UTC from IEEE Xplore. Restrictions apply.

382 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 2, FEBRUARY 2020

TABLE V

MODEL SELECTION RESULTS

we picked the best algorithm and its best hyperparameters,
and the results are shown in Table V. As can be seen in the
table, either GBT or RF is the best algorithm for all four
packet traces (in fact, their achieved F1 scores fall within about
0.5% of each other in all cases). These two methods are both
ensemble methods, which are unlikely to overfit.

We also employed the concepts of cross and non-cross
flows during the cross-validation to validate the ML model’s
accuracy on non-cross flows in terms of F1 scores. For the kth
fold validation, cross flows are flows that start within the first
K + k − 1 time slices and end within the (K + k)th slice,
while non-cross flows start and end within the (K + k)th
slice. In this way, we can get F1 scores for both cross and
non-cross flows for each fold validation, which are shown
in Table V. Note that the F1 scores for the non-cross flows
are all quite high and, for the UNIV packet traces, they are
actually higher than the F1 scores for the cross flows, while
they are only slightly smaller than those of the cross flows in
the UNIBS traces. These results show that the trained model
can be well generalized to classify unseen flows. If this was
not true, the F1 scores for the non-cross flows would be much
lower than those of the cross flows since the model does not
see non-cross flows during training. This means that there
are some common patterns that inactive flows exhibit. The
model learns these patterns from the training flows and can
then identify whether an unseen flow is active or not. This
is extremely important since the model is most likely to be
applied to non-cross flows if it is used in real systems for
a long time. Otherwise, it would be impractical to apply the
learned model to do the classification since the model would
soon be outdated.

After we select the best model with its best hyperparameters
for each dataset, we train that model over the whole training
duration (0, tmax), save the trained model, and then use the
model for online flow entry eviction.

C. Model Size Trade-Off

When we did model selection as described in the last
subsection, we only considered the F1 score of each model.
However, the F1 scores do not provide a complete picture
of model performance. First, the F1 score does not perfectly

describe the performance of a model when it is applied to flow
entry eviction. The primary goal is to minimize incorrect flow
entry evictions. While the F1 score makes a trade-off between
false positives and false negatives, which are both related
to incorrect flow entry evictions, it may not perfectly reflect
the models’ relative performances in reducing the number of
capacity misses. Second, because OpenFlow switches have
limited memory, if a model achieves a slightly smaller F1 score
but occupies a much smaller memory footprint, it may be a
better choice for implementation in practice.

In this section, we study trade-offs between performance
and memory size of the models. Here, we directly study the
number of capacity misses, which is collected from online
eviction simulations, to evaluate the performance of a model.
Capacity miss is a concept borrowed from computer architec-
ture, and it refers to a flow entry miss (i.e., no flow entry in
the flow table can be matched with the incoming packet) that
is due to the limited table size. The number of capacity misses
is equal to the number of evictions of active flows, because
evicting an active flow entry will later result in a flow entry
re-installation, which is a capacity miss. To collect the number
of capacity misses, we build a simulator which is similar
to the one used in dataset generation except that the flow
entry eviction policy can be chosen from LRU, STEREOS,
and ALFE [18]. The packets in the trace are replayed to the
simulator and flow installations and evictions are simulated to
count the number of capacity misses.

Table VI shows the performance of different models with
their sizes, where the ratio of capacity misses of STEREOS to
LRU (i.e., β) is used to compare STEREOS and LRU. Note we
do not show the results of UNIV2 because it is not the typical
case in real networks as will be discussed in Section IV-G.
From the table, we make the following observations:

1) The model with the highest F1 score does not always
achieve the best performance in terms of reducing capac-
ity misses. For example, in the case of UNIBS0930 with
4K flow table, the best model in terms of F1 score results
in more capacity misses than LRU. However, the RF
model (n_estimators: 20, criterion: entropy,
max_depth: 20) produces only 47.2% of the capacity
misses of LRU, although its F1 score is slightly smaller
than the “best” model. This phenomenon may be due

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 16,2020 at 15:34:20 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: STEREOS 383

TABLE VI

PERFORMANCE AND MODEL SIZE TRADE-OFF, β IS THE RATIO OF CAPACITY MISSES OF ML POLICY TO LRU

Fig. 3. The effects of F1 score on STEREOS.

to the fact that there is some randomness in terms of
the number of capacity misses for models with close
F1 score, which is shown in Fig. 3. This figure was
produced by running simulations on UNIV1 trace with
1K flow table, where the model used for evicting
flow entries is GBT (subsample:0.8; learning_rate:0.1;
max_depth:10) with n_estimators={5, 10, 15,
20, 25, 30, 35}. The figure shows that, as the
F1 score varies within the range of [0.892, 0.898],
the number of capacity misses fluctuates little but within
the range of [0.884, 0.892] there is a very large variation.

2) Smaller models can some times achieve fewer capacity
misses. For example, for the UNIV1 trace with 1K
flow table, the “best” model (i.e., RF model) has
a size of 41.07 MB and achieves 50.1% capacity
misses of the LRU policy. However, the GBT

model (n_estimators:30; subsample:0.8;
learning_rate:0.1; max_depth:10) only requires
3.31 MB and achieves very close to the miss rate of
the RF model (49.2% misses).

Based on these observations, we re-select the models for the
different traces considering both model size and performance,
and show the best performing ones in bold in Table VI.

D. Tuning Pmin

According to Algorithm 2, Pmin is an important parameter
for STEREOS which controls how much STEREOS should
depend on the LRU policy. Therefore, it is significant to tune
Pmin for implementing STEREOS. On one hand, small Pmin

allows the switch to evict flow entries which are classified
as inactive with low confidence. In this case, it is highly
possible that a misclassified active flow entry will be evicted.
On the other hand, large Pmin would prevent the switch
from evicting inactive flow entries which are not identified by
the trained model with very high confidence. Actually, with
large Pmin, the switch would heavily rely on the LRU policy
(line 22 in Algorithm 2) for eviction instead of the machine
learning one. Therefore, we need to tune Pmin such that as
many inactive flow entries as possible satisfy Pinactive > Pmin

and as few active entries as possible do not meet
this.

To find the appropriate Pmin, we collected the number of
capacity misses achieved by STEREOS with different Pmin

on the training periods through online eviction simulations,
which are shown in Fig. 4. As we can see, the number of
capacity misses decreases up to a certain Pmin, then increases

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 16,2020 at 15:34:20 UTC from IEEE Xplore. Restrictions apply.

384 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 2, FEBRUARY 2020

Fig. 4. The effects of Pmin on STEREOS with 1K flow table.

as Pmin grows. For example, the number of capacity misses is
reduced by 24% when Pmin is changed from 0.5 to 0.65, and it
is increased by 74% from 0.65 to 0.9. In addition, the optimal
Pmin values that achieve the minimum numbers of capacity
misses are different for the three considered packet traces. The
optimal values are 0.65 for UNIV1, 0.8 for UNIBS0930, and
0.9 for UNIBS1001. This is because the ML models used by
STEREOS achieve different classification accuracies on these
traces, as shown in Table V. In general, Pmin is larger if the
model achieves higher accuracy. We used these tuned Pmin

values in the results reported in the rest of this section.

E. Tuning Npkt

As we discussed in Section III-D, the overhead of
STEREOS is directly related to Npkt. In the above experi-
ments, we set Npkt to be 10, which may incur high overhead.
In this subsection, we study how Npkt can affect the per-
formance of STEREOS. We first generate the datasets with
Npkt = 5, 6, 7, 8, and 9 for UNIV1 and UNIBS traces. The
selected models in Table VI are then trained on these datasets
and used in online flow entry eviction simulations.

The simulation results are shown in Fig. 5. As we can
see, the number of capacity misses tends to increase as Npkt

decreases for UNIV1. For example, the number of capacity
misses is increased by 7%, 16%, and 17.6% when Npkt

is reduced from 10 to 5 for the 1K, 2K, and 4K table,
respectively. This is because a larger Npkt can, in general,
provide more information for the model and thus help increase
the classification accuracy. On the other hand, larger Npkt

means the OpenFlow switches would need more memory to
store the feature vectors. For example, when Npkt is increased
from 5 to 10, the memory cost of storing feature vectors almost
doubles. However, for UNIBS0930 and UNIBS1001 traces,
the effect of Npkt on STEREOS is not significant and even
shows some degree of fluctuation. This is because UNIBS
traces contain fewer flows than UNIV1, and the ML models
with Npkt = 5 can achieve very high F1 scores (around 0.99).
In this case, larger Npkt only contributes a small amount to
the models’ accuracy. In summary, Npkt = 5 is good for all
three traces to make a trade-off between memory consumption
and classification accuracy in practical implementation and so
we use that value in the remainder of the paper.

Fig. 5. The effects of Npkt on STEREOS with 1K flow table.

Fig. 6. The effects of feature quantization on STEREOS.

F. Feature Quantization and STEREOS Overhead

The overhead of STEREOS depends not only on Npkt but
also on the quantization levels Bt and Bl. We use uniform
quantization, which removes values above vmax and uses the
same quantization level for all values below vmax.

The size of a packet is limited. For example, Microsoft
Windows computers default to a maximum packet size
of 1500 bytes for broadband connections, and the maximum
transmission unit (MTU) of Ethernet is 1500 bytes. Thus,
we quantize packet length with one byte, and we set vmax

for packet length to be 1500.
We tested both 1 byte and 2 bytes for quantizing the time

features (tidle and tia), and the results are shown in Figure 6.
The figure shows that, in most cases, the performance of
STEREOS slightly degrades when quantization is applied. For
example, for UNIV1 with a 1K flow table, the number of
capacity misses is increased by 2% and 1.4% with 1 byte and
2 bytes quantization, respectively. In other cases, quantization
actually slightly improves the performance of STEREOS. The
reason for this might be that quantization can drop some
unnecessary information for training, and thus increase the
model’s accuracy. Overall, Figure 6 shows that 1 byte for
quantizing the time features achieves close performance to the
case where no quantization is applied.

We conclude that the overhead of STEREOS is acceptable
since with the values chosen for Npkt, Bt, and Bl, as described
above, only 10 extra bytes are required for each flow entry.
As discussed in Section III-D, basic storage information for a
flow entry uses a minimum of 80 bytes.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 16,2020 at 15:34:20 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: STEREOS 385

Fig. 7. Number of capacity misses for STEREOS, LRU, and ALFE policies.

TABLE VII

MAIN PARAMETERS FOR ONLINE EVICTION SIMULATIONS

G. Online Simulation Results

So far, we have selected ML models for each trace with
different flow table sizes, tuned their hyperparameters, Npkt

and Pmin, and chosen the feature quantization levels. Com-
bining all of these components, we performed online flow
entry eviction simulations on the testing periods of all four
traces with 1K, 2K, and 4K flow tables. We performed detailed
simulations of flow installation and flow eviction for the
STEREOS eviction policy along with LRU and ALFE [18]
policies for comparison, using a custom Python simulator.
The Python simulations allowed us to calculate and compare
miss rates for the different policies. Using the miss rates for
STEREOS and LRU found through these simulations, we also
performed ns-3 simulations to evaluate overall performance in
a more realistic full network setting. All simulations were done
on a 3.6 GHz Intel Xeon processor with 8 MB of RAM. The
main simulation parameters used in the Python simulations are
summarized in Table VII.

Fig. 7 shows the performance of STEREOS in terms of
the number of capacity misses, where the number of capacity
misses of one packet trace for each policy is normalized with
respect to the total number of capacity misses across ML,
LRU, and ALFE policies for that trace. From Fig. 7, we have
the following observations:

1) For the two UNIBS traces and the UNIV1 trace, the per-
formance gain of STEREOS over LRU is substantial,

especially for 1K and 2K flow table sizes. For those
cases, STEREOS’ improvement ranges from 45% to
78% on the three traces, compared with the LRU pol-
icy. Note that reducing capacity misses is extremely
important for OpenFlow network performance. Reduc-
ing capacity misses lowers the number of PacketIn
events and thus relieves the load on control channels
and controllers, and it also means that fewer TCP
transmissions are interrupted. In this respect, the over
45% performance gain in terms of capacity misses
achieved by STEREOS is extremely significant. As
flow table size increases, the benefits of STEREOS are
reduced somewhat. With 4K flow table size, for example,
STEREOS reduces the number of capacity misses on
the UNIV1 trace by 15% and on the UNIBS0930 trace
by 30%, compared with LRU. However, even those
gains are significant given the critical importance of
minimizing capacity misses.
We note that, for these traces, a 4K flow table size is
large enough to hold almost all of the active flows, which
is why the performance of STEREOS, relative to LRU,
drops for this case. While flow table capacities in the
newest SDN switches are even greater than 4K, current
software-defined data center networks are much larger
than the networks used to collect these traces and they
will, therefore, have far more active flows than in our
simulations. In fact, physical limitations on flow table
implementation prevent flow table size growth from
keeping up with network size and traffic growth. Thus,
capacity misses are likely to be an even greater issue
in the future, meaning that the benefits of STEREOS
should be even more significant moving forward.

2) The number of capacity misses on cross flows for LRU
is extremely high, whereas those misses are reduced
to a very low level for the ML policy in most cases.
As observed earlier, the packet inter-arrival times of

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 16,2020 at 15:34:20 UTC from IEEE Xplore. Restrictions apply.

386 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 2, FEBRUARY 2020

Fig. 8. The number of active flows.

cross flows are larger than those of non-cross flows
and flow entries with larger packet inter-arrival times
are more likely to be evicted by LRU. On the surface,
from looking at Fig. 7, it appears that the ML policy
performs worse than LRU on non-cross flows, which
seemingly contradicts our conclusion that STEREOS can
learn patterns of non-cross flows even though they don’t
appear in the training data set. However, the reason for
this seeming anomaly is simply that LRU is so poor at
classifying cross flows that an overwhelming number of
its capacity misses result from those flows, not leaving
many opportunities for non-cross flows to be wrongly
evicted. Since ML does so much better on cross flows
as shown in Fig. 9, the capacity misses that it does
incur happen more frequently with the non-cross flows.
However, the overall rate of capacity misses is reduced
substantially in almost all cases with the ML policy.

3) The performance of STEREOS is lower on the
UNIV2 trace; however, this trace is not representative of
typical network traffic scenarios. For the UNIV2 trace,
STEREOS achieves less than 5% performance gain over
LRU. This is because the number of active flows in
UNIV2 is always much larger than the flow table size,
as shown in Fig. 8. This means that, at any given time,
most of the entries in the flow table are active, and thus
STEREOS cannot outperform LRU since STEREOS is
based on the assumption that some of the flow entries are
inactive. Fortunately, this situation is not typical in real
networks – it occurs only because most of the flows in
UNIV2 are UDP flows. As shown in Table II, more than
90% of the flows in the UNIV2 traces are UDP flows,
while in typical data center traffic mixes, UDP data
volume is only 3% ∼ 9% of TCP data [19]. We note that
STEREOS performs well with UDP percentages well
above these typical values since, for the UNIV1 traces,
about 33% of the flows are UDP flows and STEREOS
substantially outperforms LRU on those traces.

4) Compared to another eviction policy from the liter-
ature, ALFE [18], the performance improvement for
STEREOS is as large as it is compared to LRU in
some cases (see UNIBS0930 traces). However, for the
UNIBS1001 and UNIV1 traces, ALFE outperforms LRU

but is worse than STEREOS. The improvement of
STEREOS compared to ALFE on those traces ranges
from 5% to 72%, with an average improvement of 30%.
ALFE’s performance is heavily dependent on existence
of a heavy tail in the packets per flow distribution,
i.e. a situation where a few “elephant” flows pro-
duce a disproportionally large percentage of packets.
In the absence of elephant flows, ALFE’s performance
degrades to that of LRU (or even slightly worse) [18].
The presence or absence of elephant flows is, therefore,
a likely explanation for the variation in ALFE’s perfor-
mance across the different traces. Because STEREOS is
trained to learn the specific characteristics of a partic-
ular network environment, its performance improvement
remains high across a range of types of traffic.

We also investigate the number of active flow entries in
the flow table. Fig. 10 shows the active flow entries in the
flow table with machine learning and LRU policies on the
UNIV1 packet trace. As can be seen, the number of active
flow entries in the flow table with STEREOS is much larger
than LRU. On average, STEREOS can increase the usage of
the flow table with 1K, 2K, and 4K capacity by 58%, 60%,
and 54% respectively, compared with LRU. This significant
improvement is achieved because STEREOS can correctly
identify and evict inactive flow entries when flow table
overflow occurs. By contrast, LRU may frequently remove
active flow entries and leave inactive flow entries in the flow
table. From Fig. 7 and Fig. 10, we can conclude that our
machine learning based flow entry eviction policy can achieve
significant performance gains compared with LRU policy.

Finally, we investigated how much performance gain
STEREOS can achieve in terms of network-wide metrics such
as throughput, delay, and packet loss rate through simulations
in an enhanced version of the packet-level simulator ns-3 we
developed to evaluate different flow entry eviction methods.
Due to space limitations, we do not present the details of
the simulations in this paper, but they can be found in [29].
The simulation results show that, compared with the LRU evic-
tion, STEREOS can reduce control overhead (i.e., the number
of OpenFlow messages exchanged between the controller
and switches) by 30%, increase the throughput by 19%,
and reduce the packet loss rate by 70%. This is because
STEREOS can mitigate wrong flow entry evictions, meaning
that fewer expensive flow setups are required. This leaves more
existing connections undisturbed, maintains free space in the
SDN buffers (e.g., the datapath buffer that stores unmatched
packets), and keeps the packet loss rate low.

H. Model Interpretation

So far, we have done a detailed investigation demonstrating
that STEREOS outperforms LRU. In this section, we attempt
to understand why STEREOS performs better. This relates to
how to interpret a machine learning model, which is a problem
that is still far from being solved [30].

Since this case study involves tens of models, we only try
to interpret the final model for UNIV1 trace with 1K flow
table, which is GBT (n_estimators:30; subsample:0.8;

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 16,2020 at 15:34:20 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: STEREOS 387

Fig. 9. Classification accuracy with 2K flow table: (a) UNIBS0930; (b) UNIBS1001; (c) UNIV1.

Fig. 10. Number of active flow entries in the flow table for the UNIV1 packet
trace.

Fig. 11. Importance of GBT model features (n_estimators = 30;
subsample = 0.8; learning_rate = 0.1; max_depth = 10) for
UNIV1 trace with 1K flow table.

learning_rate:0.1; max_depth:10) with Npkt = 5 and
using 1 byte to quantize the time and packet length features.
Although we cannot fully understand STEREOS’ performance
through this interpretation, it does provide some interesting
insights. Our interpretations are based on the SHAP framework
[31], which assigns each feature an importance (i.e., SHAP
value) for a particular prediction such that the generated
explanation model follows the definition of additive feature
attribution methods and is subject to the properties of local
accuracy, missingness, and consistency. The larger the SHAP
value of a feature, the larger is the magnitude change in model
output that results from the feature.

We first check the global mean of the absolute value of
SHAP values for each feature, which are shown in Fig. 11.

Fig. 12. SHAP values of GBT model features (n_estimators = 30;
subsample = 0.8; learning_rate = 0.1; max_depth = 10) for every
data sample (represented by one dot on each row), for UNIV1 trace with 1K
flow table.

We can see that tidle is the most important (1.35), which is
the only feature used by the LRU policy. However, the fol-
lowing features (l5, l4, l1, tis) are also important – together
their SHAP values are more than 1.74. To understand the
importance of these additional features, we plot the SHAP
values of every feature for each sample and the results are
shown in Fig. 12. As can be seen, a small l5 (the length of
the last referring packet) indicates that the flow is more likely
to be inactive while a large value indicates it is likely to be
active. This is reasonable because the last packet of a flow is
usually a signaling packet, which is short. For l1 (the length of
the first recorded packet), we see quite the opposite. Small l1
is a good sign that the flow entry is active. In addition, we can
see large tis (standard deviation of the inter-arrival time of the
last 5 recorded packets) indicates inactive flows. In summary,
STEREOS learns other important features besides tidle, which
is the single feature used by LRU, and this allows STEREOS
to more accurately classify active and inactive flows.

V. CONCLUSION

In this paper, we proposed machine learning techniques
to optimize flow entry eviction in OpenFlow switches. We
discussed implementation issues, including model selection,
model size, overhead, and feature quantization. Case studies
based on real network packet traces showed that the proposed
techniques can achieve far fewer capacity misses and much
higher flow table usage, compared with the widely-used LRU
policy. Furthermore, network-level simulations demonstrate

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 16,2020 at 15:34:20 UTC from IEEE Xplore. Restrictions apply.

388 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 2, FEBRUARY 2020

that our techniques can greatly reduce control overhead,
increase network throughput, and reduce packet loss rate.

REFERENCES

[1] A. Singh et al., “Jupiter rising: A decade of Clos topologies and
centralized control in Google’s datacenter network,” ACM SIGCOMM
Comput. Commun. Rev., vol. 45, no. 4, pp. 183–197, Aug. 2015.

[2] A. Greenberg, “SDN for the cloud,” in Proc. Keynote ACM Conf. Special
Interest Group Data Commun., 2015.

[3] OpenFlow Switch Specification (Version 1.5.1), Open Netw. Found. Std.,
Menlo Park, CA, USA, Mar. 2015.

[4] G. Lu et al., “Serverswitch: A programmable and high performance
platform for data center networks,” in Proc. Usenix NSDI, 2011, p. 2.

[5] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. 10th ACM SIGCOMM Conf.
Internet Meas., 2010, pp. 267–280.

[6] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski,
“A knowledge plane for the Internet,” in Proc. Conf. Appl., Technol.,
Archit., Protocols Comput. Commun., 2003, pp. 3–10.

[7] C. Yu, J. Lan, Z. Guo, and Y. Hu, “DROM: Optimizing the routing
in software-defined networks with deep reinforcement learning,” IEEE
Access, vol. 6, pp. 64533–64539, 2018.

[8] S. T. V. Pasca, S. S. P. Kodali, and K. Kataoka, “AMPS: Application
aware multipath flow routing using machine learning in SDN,” in Proc.
Nat. Conf. Commun., 2017, pp. 1–6.

[9] Y. He, F. R. Yu, N. Zhao, H. Yin, and A. Boukerche, “Deep rein-
forcement learning (DRL)-based resource management in software-
defined and virtualized vehicular ad hoc networks,” in Proc. ACM Symp.
Develop. Anal. Intell. Veh. Netw. Appl., 2017, pp. 47–54.

[10] C. Sieber, A. Obermair, and W. Kellerer, “Online learning and adaptation
of network hypervisor performance models,” in Proc. IFIP/IEEE Symp.
Integr. Netw. Service Manage. (IM), May 2017, pp. 1204–1212.

[11] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
“Deep learning approach for network intrusion detection in software
defined networking,” in Proc. Int. Conf. Wireless Netw. Mobile Commun.,
2016, pp. 258–263.

[12] Q. Niyaz, W. Sun, and A. Y. Javaid, “A deep learning based
DDoS detection system in software-defined networking (SDN),” 2016,
arXiv:1611.07400. [Online]. Available: https://arxiv.org/abs/1611.07400

[13] Q. Li, N. Huang, D. Wang, X. Li, Y. Jiang, and Z. Song, “HQTimer:
A hybrid Q-learning based timeout mechanism in software-defined
networks,” IEEE Trans. Netw. Service Manag., vol. 16, no. 1,
pp. 153–156, Mar. 2019.

[14] H. Yang and G. F. Riley, “Machine learning based proactive flow entry
deletion for OpenFlow,” in Proc. IEEE Int. Conf. Commun., May 2018,
pp. 1–6.

[15] K. Kannan and S. Banerjee, “Flowmaster: Early eviction of dead flow
on SDN switches,” in Proc. Int. Conf. Distrib. Comput. Netw., 2014,
pp. 484–498.

[16] H. Yang and G. F. Riley, “Machine learning based flow entry eviction
for OpenFlow switches,” in Proc. Int. Conf. Comput. Commun. Netw.
(ICCCN), 2018, pp. 1–8.

[17] R. Challa, Y. Lee, and H. Choo, “Intelligent eviction strategy for efficient
flow table management in OpenFlow switches,” in Proc. IEEE NetSoft
Conf. Workshops (NetSoft), Jun. 2016, pp. 312–318.

[18] T. Pan, X. Guo, C. Zhang, W. Meng, and B. Liu, “ALFE: A replacement
policy to cache elephant flows in the presence of mice flooding,” in Proc.
IEEE Int. Conf. Commun., Jun. 2012, pp. 2961–2965.

[19] B.-S. Lee, R. Kanagavelu, and K. M. M. Aung, “An efficient flow
cache algorithm with improved fairness in software-defined data center
networks,” in Proc. IEEE Int. Conf. Cloud Netw., Nov. 2013, pp. 18–24.

[20] M. Kuźniar, P. Perešíni, and D. Kostić, “What you need to know about
SDN flow tables,” in Proc. Int. Conf. Passive Active Netw. Meas., 2015,
pp. 347–359.

[21] Z. Guo et al., “STAR: Preventing flow-table overflow in software-defined
networks,” Comput. Netw., vol. 125, pp. 15–25, Oct. 2017.

[22] X. Lin, R. Blanton, and D. Thomas, “Random forest architectures on
FPGA for multiple applications,” in Proc. Great Lakes Symp. VLSI,
2017, pp. 415–418.

[23] T. Tanaka, R. Kasahara, and D. Kobayashi, “Efficient logic architec-
ture in training gradient boosting decision tree for high-performance
and edge computing,” 2018, arXiv:1812.08295. [Online]. Available:
https://arxiv.org/abs/1812.08295

[24] E. Alpaydin, Introduction to Machine Learning. Cambridge, MA, USA:
MIT Press, 2014.

[25] C. Bergmeir and J. M. Benítez, “On the use of cross-validation for time
series predictor evaluation,” Inf. Sci., vol. 191, pp. 192–213, May 2012.

[26] M. Dusi, F. Gringoli, and L. Salgarelli, “Quantifying the accuracy of
the ground truth associated with Internet traffic traces,” Comput. Netw.,
vol. 55, no. 5, pp. 1158–1167, 2011.

[27] A. Vishnoi, R. Poddar, V. Mann, and S. Bhattacharya, “Effective switch
memory management in OpenFlow networks,” in Proc. ACM Int. Conf.
Distrib. Event-Based Syst., 2014, pp. 177–188.

[28] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.

[29] H. Yang, “Building scalable software defined OpenFlow networks,”
Ph.D. dissertation, Georgia Inst. Technol., Atlanta, GA, USA, 2019.

[30] M. Du, N. Liu, and X. Hu, “Techniques for interpretable machine learn-
ing,” 2018, arXiv:1808.00033. [Online]. Available: https://arxiv.org/abs/
1808.00033

[31] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 4765–4774.

Hemin Yang received the B.S. and M.S. degrees
in computer and information science from Peking
University, China, in 2012 and 2015, respectively,
and the Ph.D. degree in electrical and computer engi-
neering from the Georgia Institute of Technology
in 2019. He is currently a Software Engineer with
Microsoft, Redmond, WA, USA. His research inter-
ests are in the area of software defined networking
and machine learning applications.

George F. Riley received the Ph.D. degree in com-
puter science from the Georgia Institute of Tech-
nology in 2001. He was a Professor of electrical
and computer engineering with the Georgia Insti-
tute of Technology. He also worked on internet
measurement methods, internet routing protocols,
and software-defined networks. His research focused
on creating more efficient methods and tools for
simulation of both wired and wireless computer
networks.

Douglas M. Blough received the B.S. degree in
electrical engineering, and the M.S. and Ph.D.
degrees in computer science from Johns Hopkins
University, in 1984, 1986, and 1988, respectively.
He is currently a Professor of electrical and com-
puter engineering with the Georgia Institute of Tech-
nology. His research considers a variety of problems
in computer networks with a primary interest in
advanced wireless networking techniques.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 16,2020 at 15:34:20 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

