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ABSTRACT 
In this paper we consider the following problem for ad hoc 
networks: assume that n nodes are distributed in a d-dimensional 
region, with 1≤d≤3, and assume that all the nodes have the same 
transmitting range r; how large must r be to ensure that the 
resulting network is strongly connected? We study this problem 
by means of a probabilistic approach, and we establish lower and 
upper bounds on the probability of connectedness.  For the one-
dimensional case, these bounds allow us to determine a suitable 
magnitude of r for a given number of nodes and displacement 
region size.  In an alternate formulation, the bounds allow us to 
calculate how many nodes must be distributed should the 
transmitting range be fixed.  Finally, we investigate the required 
magnitude of r in the two and three-dimensional cases through 
simulation. Based on the bounds provided and on the simulation 
analysis, we conclude that, as compared to the deterministic case, 
a probabilistic solution to this range assignment problem achieves 
substantial energy savings. A number of other potential uses for 
our analyses are discussed as well. 

1. INTRODUCTION 
Recent emergence of affordable, portable, wireless com-
munication and computation devices, and concomitant advances 
in the communication infrastructure, have resulted in the rapid 
growth of mobile wireless networks. Among these, ad hoc 
networks, i.e. networks of mobile, untethered units 
communicating with each other via radio transceivers, are 
receiving increasing attention in the scientific community. Ad hoc 
networks, also called multi-hop packet radio networks, can be 
used wherever a wired backbone is not viable, e.g. in mobile 

computing applications in areas where other infrastructure is 
unavailable, or to provide communications during emergencies. 
When designing protocols for ad hoc networks, the following 
characteristics peculiar to these networks have to be taken into 
account: 

- shared communications: since the stations in the network 
communicate via radio transceivers, the most natural 
communication paradigm is one-to-many: when a unit 
transmits, all the units within its transmitting range receive the 
message. On the contrary, wired networks use selective 
transmission (one-to-one) as the natural communication 
paradigm. 

- energy constraints: since the stations are equipped with 
limited energy supplies, one of the primary goals is to reduce 
the overall energy consumption of the network, thus 
increasing its lifetime.  

Routing, broadcast and clustering protocols explicitly designed 
for ad hoc networks have been recently proposed in the literature 
[1,2,5,6,9,11,12,13,15]. Some of these protocols are designed for 
energy-efficient operation in an existing network topology, while 
others attempt to deal with the effects of mobility, and still others 
consider both of these aspects.  
It should be observed that further energy can be saved if the 
network topology itself is energy-efficient, i.e. if the transmitting 
ranges of the units are set in such a way that a target property (e.g. 
strong connectivity1) of the resulting network topology is 
guaranteed, while the global energy consumption is minimal. For 
this reason, topology control protocols have been recently 
introduced [10,14,16] in the literature. Informally speaking, a 
topology control protocol is an algorithm in which units adjust 
their transmitting ranges in order to achieve a desired topological 
property, while optimizing energy consumption. The problem of 
ensuring strong connectivity while minimizing some measure of 
energy consumption has also been considered in a more 
theoretical framework, where it is referred to as the range 
assignment problem. In particular, it has been shown that 
determining an optimal range assignment is solvable in 
polynomial time in the one-dimensional case, while it is NP-hard 

                                                                 
1 A directed graph G=(V,E) is said to be strongly connected if, for every 

u,v∈V, there exist directed paths from u to v and from v to u. 
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in the two and three-dimensional cases [3,8] 2.  
In this paper, we consider the range assignment problem under a 
probabilistic model in which we assume the assignment to be 
homogeneous, i.e. each node sets its transmitting range to the 
same value r. Note that, in this formulation, r is a critical 
parameter to optimize because the energy consumed by a node for 
communication is directly dependent on its transmitting range.  In 
the probabilistic model that we adopt, n nodes are distributed 
uniformly and independently in a d-dimensional cube having 
sides of length l, with 1≤d≤3.  One question to ask in this setting 
is: “How large must r be to ensure strong connectivity of the 
resulting network?”.  It can be easily seen that the deterministic 
solution to this problem is r≈ dl , which accounts for the fact 
that nodes could be concentrated at opposite corners of the 
displacement region. However, this scenario appears to be very 
unlikely in most realistic situations.   
We investigate the tradeoffs between the values of r, n and l that 
are necessary or sufficient in order to produce a strongly 
connected graph with high probability. In particular, we establish 
lower bounds on the magnitude of rdn (with respect to l) that is 
necessary to produce a high probability of connectedness. 
Furthermore, we derive an upper bound on rn that is sufficient to 
ensure connectedness with high probability for the case d=1. The 
derived bounds are validated by means of simulation, which also 
gives experimental tradeoffs between r, n and l for the cases d=2 
and d=3. Based on the bounds provided and on the simulation 
analysis, we conclude that, as compared to the deterministic case, 
a probabilistic solution to the range assignment problem achieves 
substantial energy savings. In light of existing work on related 
topics, our analyses can also be used in a number of other ways, 
as described in the next section. 

2. RELATED WORK 
In this section, we review several topology control protocols that 
have been presented recently in the literature. 
In [16], Rodoplu and Meng presented a distributed topology 
control protocol aimed at minimizing the energy required to 
communicate with a given master node. They assume that nodes 
are equipped with low-power GPS receivers, which provide 
position information to each node. The protocol is divided in two 
phases. Initially, every node iteratively broadcasts its position to 
different search regions. This process ends when the node, based 
on the position information gathered from neighbors, is able to 
calculate a set of nodes referred to as its enclosure. The authors 
prove that the enclosure graph, i.e. the graph in which every node 
is connected to all the nodes in its enclosure, is strongly 
connected. In the second phase of the protocol, the enclosure 
graph is pruned in a distributed fashion so that the energy needed 
to communicate with a given master node is minimum. The 
protocol has been simulated in both static and dynamic networks, 

                                                                 
2  It should be noted that the topology control protocols proposed in [16] 

and [14] minimize a given objective function, which is not the overall 
energy consumption. In particular, in [16] the authors minimize the 
energy needed to communicate with a single master node, while in [14] 
the authors minimize the maximum transmitting range of nodes. In 
[10], no explicit cost function is minimized. 

and the simulation results show that it achieves significant energy 
savings. 
In [14], Ramanathan and Rosales-Hain considered the problem of 
minimizing the maximum of node transmitting ranges while 
achieving connectedness. They also considered the stronger 
requirement of bi-connectivity. They present centralized topology 
control algorithms that provide the optimal solution for both 
versions of the problem. The range assignment returned by the 
algorithm has the additional property of being per-node minimal, 
i.e. no transmitting range can be reduced further without 
impairing connectedness (or bi-connectivity). The authors also 
present two heuristics to deal with mobility. The first heuristic, 
called LINT, aims at maintaining a specified number of neighbors. 
Every node is configured with three parameters: the desired 
number of neighbors, and high and low thresholds. When the 
actual number of nodes is below (above) the threshold, the 
transmitting range is increased (decreased) until the number of 
neighbors is in the proper range. A second heuristic, called LILT, 
is considered. LILT exploits the global topology information that 
is available with some routing protocols: if the topology change 
indicated by the routing update results in a disconnected graph, 
LILT overrides the high threshold on the number of neighbors in 
order to restore connectedness. The performance of the algorithms 
and of the heuristics proposed are evaluated through simulations, 
which show that they reduce the energy consumption or improve 
the network throughput.  
In [10], Li, et al., analyze the properties of a distributed topology 
control protocol based on directional information. The basic idea 
is that a node u transmits with the minimum power α,up  such that 
there is at least one neighbor in every cone of angle α centered at 
u. In order to reduce the power, α should be as large as possible. 
The authors show that setting α=5π/6 is a necessary and sufficient 
condition to guarantee connectedness, while the stronger 
requirement α=2π/3 ensures the network is strongly connected. A 
set of optimizations aimed at further reducing the power 
consumption without impairing (strong) connectedness is also 
presented. Furthermore, the authors discuss how the algorithm 
could be modified to deal with mobility. The effectiveness of the 
proposed protocol for static networks is demonstrated by means of 
simulation. 
Although the protocols described above have been proven to be 
effective, all of them rely on rather strong assumptions. In fact, 
the protocol of [16] assumes that every node is equipped with a 
GPS receiver, while in [14] it is assumed that the relative 
distances of all the nodes are given as input to a centralized 
topology control algorithm. Finally, the protocol of [10] relies on 
directional information available at each node, which is made 
possible by using more than one directional antenna. Such 
assumptions are not achievable in many settings, such as sensor 
networks, where nodes must be extremely simple, and where no 
centralized communication facility is available. 
It should also be observed that, even in those settings where the 
proposed topology control mechanisms are feasible, some aspects 
of their implementation have not been considered. For instance, in 
[16] the number of iterations needed to determine the enclosure is 
based on the definition of the initial search region. Hence, the 
search region is a critical aspect, which affects the energy 
consumption of the protocol. However, no clues are given on how 
this region should be defined. In [14], the authors give no insight 



into how the appropriate number of neighbors should be selected 
for the LINT heuristic. Finally, in [10] every node starts by 
broadcasting a “hello” message with some minimal power p0. If 
the nodes that respond to the message cover all the cones with the 
given angle, then the protocol stops, otherwise the transmitting 
power is increased and a new “hello” message is broadcast. This 
process is iterated until the desired coverage is guaranteed. 
However, what the initial power and its step increase should be is 
not discussed. 
These observations provide the following additional motivations 
to study the probabilistic range assignment problem, beyond 
simply reducing energy consumption as compared to the 
deterministic solution:  

- to determine an initial range assignment for nodes from which 
a simple (and therefore energy-efficient) search for an 
optimized assignment can be initiated; such an assignment 
could be the initial “best guess” for distributed protocols such 
as those in [16] and [10]; 

- to study simple topological properties (e.g. minimum degree) 
that are associated with strong connectivity; these properties 
can be useful, for instance, in determining appropriate 
parameters for the LINT protocol [14]. 

A final motivation stems from the observation that inexpensive 
radio transceivers might not allow the transmitting range to be 
adjusted [14]. This type of transceiver is likely to be used in 
sensor networks, where the individual unit should cost as little as 
possible. Under this scenario, a fundamental question to the 
system designer would be: for a given transmitter technology, how 
many nodes must be distributed over a given region to ensure 
connectedness with high probability? Such a question can be 
addressed using the probabilistic model presented herein. 

3. PRELIMINARIES 
A multi-hop wireless d-dimensional network is represented by a 
pair Md=(N,D), where N is a set of nodes, and [ ]dlTND ,0: →× , 
for some l>0, is the displacement function. T⊂R is a set of 
moments of time. The parameter d, with 1≤d≤3, is called the 
dimension of the network. The cardinality of set N, denoted n, is 
called the order of the network. In the following it is assumed that 
n>1. The displacement function assigns to every element of N and 
to any time t a set of coordinates in the d-dimensional cube of 
width l, representing the node’s physical position at time t. The 
choice of limiting the admissible physical locations of units to a 
bounded region of Rd is realistic and will ease the probabilistic 
analysis of Section 5. For the sake of simplicity, we assume that 
the bounded region is of the form [0,l]d, for some l>0. Parameter l 
is called the size of the system. If the physical location of nodes 
does not vary with time, the network is said to be static, and 
function D can be redefined simply as [ ]dlND ,0: → . 

A range assignment for a d-dimensional network Md=(N,D) is a 
function ],0(: RNRA →  that assigns to every element of N a 
value in (0,R], representing its transmitting range. Parameter R is 
called the maximum transmitting range of the nodes in the 
network and depends on the features of the radio transceivers 
equipping the mobile stations. We assume that all the stations are 
equipped with transceivers having the same features; hence, we 
have a single value of R for all the nodes in the network. 

Given a d-dimensional network Md=(N,D) and a range assignment 
RA for Md, the communication graph of Md induced by RA at time 
t, denoted GM(RA,t), is defined as GM(RA,t)=(N,E(t)), where the 
directed edge (u,v) is in E(t) if and only if v is in the transmitting 
range of u at time t, i.e. if and only if δd(D(u,t),D(v,t))≤RA(u), 
where δd denotes the Euclidean distance in the d-dimensional 
space. In this case node v is said to be a neighbor of u. Note that 
GM(RA,t) as defined here corresponds to the point graph as 
defined in [17]. 
The communication graph represents the set of all possible 
communication links in the network and is used to describe the 
desired properties of the wireless network. One common 
requirement is that the communication graph be strongly 
connected. Given a d-dimensional network Md, a range assign-
ment RA is said to be connecting at time t if GM(RA,t) is strongly 
connected. Conversely, RA is said to be disconnecting at time t if 
GM(RA,t) is not strongly connected. 
A range assignment RA is said to be r-homogeneous if RA(u)=r 
for every u∈N, i.e. if all the units have the same transmitting 
range r, for some r≤R. 
If a topology control mechanism is available, the range 
assignment may vary with time in order to ensure target properties 
(e.g. strong connectivity, or a given diameter h<n) of the 
communication graph. Hence, a sequence of range assignments 

,...,
21 tt RARA  can be defined, where 

itRA is the range assignment 
at time ti and the transition between range assignments is 
determined by the topology control mechanism. If topology 
control is not available, the range assignment is said to be static 
and cannot vary with time. Observe that if the range assignment is 
static but the network is not static, it is very likely that the target 
properties of the communication graph will be impaired at least 
temporarily. 

4. A RANGE ASSIGNMENT PROBLEM 
FOR AD HOC NETWORKS 

In the remainder of this paper we consider the following problem 
for static ad hoc networks with homogeneous transmitting range:  
MINIMUM HOMOGENEOUS RANGE ASSIGNMENT (MHRA):  

Suppose n nodes are placed in [0,l]d; let R be the maximum 
transmitting range of the nodes, and let the R-homogeneous 
range assignment be connecting. What is the minimum r such 
that the r-homogeneous range assignment is connecting?  

Solving this problem is of primary importance in all those settings 
in which a topology control mechanism is not feasible and the 
physical location of units is not known in advance, as could be the 
case in a sensor network whose elements are spread from a 
moving vehicle (airplane, ship or spacecraft). In this scenario, 
setting the same transmitting range for all the units is a reasonable 
choice, and the transmitting range should be as small as possible 
in order to reduce both the power consumption and the 
interference between node transmissions while preserving 
connectedness. 
It can be easily seen that the deterministic solution to MHRA is 
r∈Θ(l) for any n, since the worst-case scenario occurs when all 
the units are concentrated at opposite corners of [0,l]d. However, 
this scenario appears to be very unlikely in most realistic 



situations. For this reason we study MHRA by means of a 
probabilistic model, which establishes tradeoffs between the 
magnitudes of r, n and l that yield a high probability of 
connectedness. Observe that, when dealing with the magnitude of 
l, the choice of unit is important. In the following, we assume that 
r and l are measured using the same arbitrary unit, which is 
therefore canceled out when discussing the relative sizes of r and 
l. 

5. A PROBABILISTIC MODEL FOR 
MHRA 

Consider the probability space (Ωl,Fl,Pl), where Ωl=[0,l]d, Fl is the 
family of all closed subsets of Ωl and Pl is a probability 
distribution on Ωl. In this paper, we assume that Pl is the uniform 
distribution on Ωl, i.e. the distribution of a vector-valued random 
variable Z with values in Ωl such that for any V∈ Fl,  

( ) ( )
dl l

volZP VV =∈ ,  

where vol(V) is the d-dimensional volume of region V. Under this 
setting, nodes in N can be modeled as independent random 
variables with values in Ωl, which will be denoted Z1,…,Zn. 
We say that an event Ek, describing a property of a random 
structure depending on a parameter k, holds asymptotically almost 
surely (a.a.s. for short), if P(Ek) →1 as k→∞. 
We recall the standard notation regarding the asymptotic behavior 
of functions. Let f and g be functions of the same parameter x. We 
have: 

- f(x)∈O(g(x)) if there exist constants C and x0 such that 
f(x)≤C⋅g(x) for any x≥x0; 

- f(x)∈Ω(g(x)) if g(x)∈O(f(x)); 

- f(x)∈Θ(g(x)) if f(x)∈O(g(x)) and f(x)∈Ω(g(x)); 

- f(x)∈o(g(x)) if f(x)/g(x)→0 as x→∞. 

- f(x)<<g(x) or g(x)>>f(x) if f(x)∈o(g(x)). 
In the following we consider the asymptotic behavior of the event 
CONNECTEDl on the random structures (Ωl,Fl,Pl) as l→∞. 
Informally speaking, event CONNECTEDl corresponds to all the 
values of the random variables Z1,..,Zn for which the r-
homogeneous range assignment is connecting. 

5.1 An upper bound on the probability of a 
connecting range assignment 

The formal definition of CONNECTEDl in terms of Z1,..,Zn and r 
is a difficult task. For this reason, we first study the asymptotic 
behavior of the simpler event ISOLATEDNodel(i), which 
corresponds to all the values of the random variables Z1,..,Zn such 
that node i is isolated in the communication graph. It is immediate 
that ISOLATEDNodel(i)⊆DISCONNECTEDl, where DISCON-
NECTEDl = Ωl - CONNECTEDl. As a consequence, if Pl(ISOLA-
TEDNodel(i))→ε>0 as l→∞, then CONNECTEDl does not hold 
a.a.s.. Hence, lower bounds on the order of magnitude of r and n 
that enable an a.a.s. connected communication graph can be 
derived by studying the asymptotic behavior of ISOLA-
TEDNodel(i). 

Upper and lower bounds to the probability of the event 
ISOLATEDNodel(i) are stated in the following Lemma. 

Lemma 1  
∀l>0,∀i∈{1,..,n}, 
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for networks of dimension d, where c1 and c2 are constants 
depending on d. 
Proof. 
We report the proof for the case d=1. The proofs for the cases 
d=2 and d=3 are similar. Consider an arbitrary node i, whose 
displacement is given by the value of the random variable Zi. 
Node i is isolated if none of the remaining n-1 nodes is within 
its transmitting range. The upper bound accounts for the fact 
that i is at coordinate 0 or l. In this case, the probability that 

any other node is out of i’s transmitting range is 






 −
l
r1 , and 

the upper bound follows observing that the random variables 
are independent (in this case, c2=1). The lower bound 
accounts for the fact that when node i is displaced in [r,l-r] 
the probability that any other node is out of i’s transmitting 

range is 

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As a consequence of Lemma 1, the asymptotic behavior of 
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value of this limit depends on the magnitudes of r and n expressed 
as a function of l. First, we observe that if r∈Θ(l) and n is any 
increasing function of l, then the limit is at most 0, thus not 
contradicting the magnitude of r for the deterministic case. The 
following theorem establishes the value of the limit for r∈o(l). 

Theorem 1 
Let r∈o(l). Then: 
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Proof. 
The proof of this theorem is reported in the Appendix. �

Corollary 1 
Suppose n nodes are displaced in [0,l]d according to the 
uniform distribution. Then the r-homogeneous range 
assignment is not a.a.s. connecting if rdn∈O(ld), and it is a.a.s. 
disconnecting if rdn<<ld. 

Corollary 1 states that the magnitude of rdn must be strictly 
greater than the volume of the displacement region, to have a 
possibility that the r-homogenous range assignment is a.a.s. 
connecting. 



5.2 A lower bound on the probability of a 
connecting range assignment for d=1 

The characterization of the event CONNECTEDl is not 
straightforward. In this sub-section we give a formal definition of 
its complementary event DISCONNECTEDl in terms of Z1,..,Zn 
and r for the case d=1. The definition of CONNECTEDl in terms 
of DISCONNECTEDl follows trivially. 
Let x1,..,xn be the values assigned (according to the uniform 
distribution in [0,l]) to the random variables Z1,..,Zn. Let us order 
values x1,..,xn starting from the smallest. We obtain a permutation 
ρ of the indices such that the sequence xρ(1),…xρ(n) is ordered.  It 
is straightforward that the r-homogeneous range assignment on 
the network whose nodes are located at x1,..,xn is disconnecting if 
and only if there exist 1<i≤n such that  
xρ(i)-xρ(i-1)>r.  Thus, the range assignment is disconnecting if and 
only if there exists a segment S=[s,s+λ], with λ≥r, such that no 
unit is displaced in S, at least one unit is in [0,s) and at least one 
unit is in (s+λ,l] (see Figure 1). The segment S is said to be a λ-
hole. 
 

S 

0 s s+λ l

 
Figure 1. Node displacement generating a disconnecting 
range assignment (λλλλ ≥≥≥≥ r). 

In order to upper bound the probability of the event 
DISCONNECTEDl, we consider the probability of the sub-event 

λ,EDDISCONNECT s
l , in which the left point of the λ-hole is at 

coordinate s. Observe that λ,EDDISCONNECT s
l ⊂ DISCON- 

',NECTED λs
l for every λ′ <λ, hence we can restrict our attention 

to the largest event, i.e. rs
l
,EDDISCONNECT . 

Let us define random variables LH, H, and HR representing the 
number of nodes to the left of the hole, in the hole, and to the 
right of the hole, respectively. Since random variables Z1,..,Zn are 
independent, the probability P(LH=k1,H=k2,HR=k3) with 
k1+k2+k3=n is given by: 
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i.e. it is the multinomial distribution [4] with parameters p1=s/l, 
p2=r/l and p3=(l-s-r)/l. We have: 
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An upper bound to P(DISCONNECTEDl) can be derived by 
summing the probabilities P( rs

l
,EDDISCONNECT ) for all 

possible values of s. We thus have: 
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Based on the preceding discussion, we can state the following 
theorem: 

Theorem 2 
Assume n nodes are displaced at random in [0,l]. Then, the 
probability that the r-homogeneous range assignment is 

connecting is at least 1-
n

l
rrl 






 −− 1)( . 

The result stated in Theorem 2 can be useful in the design of 
sensor networks. If sensors are equipped with inexpensive 
transceivers that do not allow the transmitting range to be 
adjusted, and a certain region must be covered, a natural question 
would be: “how many sensors have to be deployed in order to 
obtain a strongly connected network?”. Theorem 2 gives a 
probabilistic answer to this question in the case of one-
dimensional networks. As an example, Table 1 reports the 
minimum value of n ensuring a probability of connectedness of at 
least 0.95 for values of l ranging from 1024 to 4194304, with 
range assignments r=l/100, r= l  and  r=l/log2 l.3 It should be 
observed that if the transmitting range is proportional to l, then 
the number of nodes required to achieve a high probability of 
connectedness grows very slowly with l.  Conversely, if r∈o(l), 
then the number of nodes required grows rapidly with l.  Since the 
transmitting range is expected to be fairly small with the 
inexpensive transmitters likely to be used in sensor networks, this 
implies possibly large numbers of nodes will be required in those 
settings. 

Since we are assuming r∈o(l), the asymptotic behavior of the 
expression (1) is the same as that of the simpler expression 
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Theorem 3 
Let r and n be positive increasing functions of l, with l>0.  Let 
r∈o(l) and assume that ∃l0  and ε>0, such that rn≥l(1+ε)ln l 

for all l ≥ l0. Then 
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Proof.  The proof is reported in the Appendix. � 
                                                                 
3  Unless otherwise specified, all the logarithms in this paper have a base 

of 2. 



 

l r=l/100 r= l  r=l/ log2 l 

1024 987 312 987 
4096 1125 718 1623 

16384 1263 1619 2482 
65536 1401 3598 3598 

262144 1539 7914 5005 
1048576 1677 17254 6735 
4194304 1815 37356 8821 

Table 1. Minimum value of n ensuring a probability of 
connectedness of at least 0.95. We considered values of l 
ranging from 1024 to 4194304, and three different range 
assignments: r=l/100, r= l  and r= l/log2 l. 

We can conclude this subsection with the following theorem: 
Theorem 4 
Suppose n nodes are placed in [0,l] according to the uniform 
distribution. If rn∈Ω(l log l), then the r-homogeneous range 
assignment is a.a.s. connecting. 
Proof. 

We have 
n

lll l
rlP 
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

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∞→∞→

1lim1)CONNECTED(lim =1, and 

the proof follows trivially by observing that P(CON-
NECTEDl)≤1 for every l.  � 

6. SIMULATION RESULTS 
The probabilistic model introduced in the previous section has 
been experimentally evaluated by means of extensive simulations. 
The objective of the simulations was twofold: on one hand, to 
validate the conditions, obtained by the theoretical analysis, under 
which range assignments are a.a.s. disconnecting and a.a.s. 
connecting (d=1 only); on the other hand, to provide simulation-
based analysis of the probability of connectedness for two and 
three-dimensional networks. 
The simulator distributes n nodes in [0,l]d according to the 
uniform distribution, then generates the communication graph 
assuming that all the nodes have the same transmitting range r. 
Parameters n, l, d and r are given as input to the simulator, along 
with the number of iterations to run. The simulator returns the 
percentage of connecting range assignments and the average 
number of neighbors of a node (i.e., the average degree of the 
communication graph). The average is evaluated over all the 
iterations, including those that yielded a disconnecting range 
assignment. 
A first set of simulations was aimed at confirming Corollary 1, 
which gives conditions under which range assignments are a.a.s 
disconnecting. We considered increasing values of l ranging from 
256 to 1048576. For every value of l, we chose r and n in such a 
way that rdn=ld and we ran 250 simulations. Two cases were 
considered: n= l  and n=l/log2 l, thus obtaining values of n 
ranging from 16 to 1024 and from 4 to 2621, respectively4. 

                                                                 
4  In the latter case, the simulations for n=4 were not considered, due to 

their scarce significance. 

Simulating beyond n=2621 would have required excessive 
simulation time. 
The results of these simulations confirmed the Corollary 1 result: 
the percentages of connecting range assignments are always quite 
low, and tend to decrease as l increases. These results are not 
shown because the percentage of connecting assignments was 
quite close to 0 for all simulation runs.  We also considered the 
impact of a multiplicative constant of r or n on the percentages of 
connecting assignments. The results showed a more significant 
effect due to a multiplicative constant of r than one of n. Although 
showing higher percentages of connecting range assignments with 
respect to the previous simulations, the asymptotic behavior was 
confirmed: as l increases, the percentage of connecting 
assignments decreases (see Figure 2). 
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Figure 2. Percentage of connecting range assignments for 
increasing values of l. Parameter n was set to l . 
Parameter r was set to l3  for d=1, to 2l3/4 for d=2, and to 
1.5l5/6 for d=3. 

A second set of simulations was aimed at verifying Theorem 4 
for one-dimensional networks. Recall that Theorem 4 states 
conditions under which range assignments are a.a.s. 
connecting for d=1.  We ran simulations with the same values 
of l and n, this time setting r in such a way that rn=l log l. The 
results were that 100% of the range assignments were 
connecting for all the simulations. We also considered the 
effect of multiplicative constants of r on the percentage of 
connecting assignments. We ran simulations with r’=kr, for 
values of k ranging from 0.5 to 0.9 in steps of 0.1. As shown 
in Figure 3, the results once more confirmed the expected 
asymptotic behavior. 
Finally, we investigated the relation between rdn and the 
percentage of connecting assignments for two and three-
dimensional networks. Quite surprisingly, the simulations 
indicated that the bound for one-dimensional networks might 
also hold in two and three dimensions. In fact, we ran 
simulations for values of l ranging from 256 to 4194304, with 
values of n ranging from 16 to 2048 and from 4 to 8666. The 
larger value of l (and, consequently, of n) was needed in order 
to better investigate the asymptotic behavior. For every 
simulation, we set r in such a way that rdn=ld log l. 100% of 
the assignments were connecting for all the simulations. We 



also ran the simulations with r’=kr, for values of k ranging 
from 0.5 to 0.9 in steps of 0.1. As shown in Figures 4 and 5, 
the results showed that a ld log l bound is sufficient to ensure 
increasing percentages of connecting range assignments.  Note 
for d=3 (Figure 5), that when the multiplicative constant on r 
gets small, percentages of connecting assignments can be 
quite low but that the asymptotic trend is still increasing in 
this case. 
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Figure 3. Percentage of connecting range assignments for 
increasing values of l in one-dimensional networks. Para-
meters n and r were set to l and llk log , respectively. 
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Figure 4. Percentage of connecting range assignments for 
increasing values of l in two-dimensional networks. 
Parameters n and r were set to l and lkl log4/3 , 
respectively. 

The simulations evidenced a close relation between the 
average number of neighbors, denoted by #Neigh, and log l, 
i.e. the expected number of neighbors in the case d=1 (and, 
presumably, also in the cases d=2 and d=3). When the ratio 
#Neigh/log l was far below 1, the percentage of connecting 
range assignments was negligible; as #Neigh/log l approached 
1, the percentage of connecting assignments approached 
100%. Furthermore, #Neigh/log l had the same asymptotic 
behavior as the probability of obtaining a connecting 
assignment: if rdn∈O(ld), it decreased as l increased; 
conversely, if rdn∈Ω(ld logl), it increased (see Figure 6). This 

relationship could be an important guideline in the design of 
topology control protocols aimed at maintaining connectivity 
in highly dynamic networks.  For example, the desired number 
of neighbors  in  the  LINT heuristic of [14] could  be  set  to  
log l. 
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Figure 5. Percentage of connecting range assignments for 
increasing values of l in three-dimensional networks. 
Parameters n and r were set to l and 36/5 log lkl , 
respectively. 
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Figure 6. Value of #Neigh/log l for increasing values of l in 
two-dimensional networks. Parameter n was set to l . 
The plots for r=l3/4, r=0.5r’ and r=0.6r’, with r’= ll log4/3 , 
are displayed. 

We also evaluated the transmitting range reduction achieved 
by a probabilistic solution to MHRA, by comparing the 
transmitting range l d  of the deterministic solution with that 
obtained by setting r in such a way that rdn=ld log l. Since the 
transmitting power is proportional to rα, for some 2≤α≤6, a 
reduction in the transmitting range results in an even higher 
reduction in the power needed to transmit data. Figure 7 
shows the ratio of the probabilistic to the deterministic 
transmitting ranges for d=1, d=2 and d=3. As can be seen, the 
ratio is always below 0.5, and can be as small as 0.02. It 
should also be noted that the relative reduction achieved by 



the probabilistic solution tends to increase as the system size 
increases. 
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Figure 7. Ratio of the probabilistic to the deterministic 
transmitting ranges for increasing values of l. Parameter n 
was set to l . 

7. CONCLUSIONS 
The results obtained in this paper give positive answers to a 
number of the problems that motivated our study. 
First, we showed that if a high probability of connectedness is 
sufficient, then the transmitting range (hence, the energy 
consumption) of nodes can be reduced substantially from the 
deterministic requirements. For the parameter values studied 
through simulation, the probabilistic transmitting range varies 
from 50% down to 2% of the deterministic value as l increases.  
Our analysis can also be used to determine the appropriate 
number of nodes to distribute over a given interval in order to 
achieve a connecting assignment with high probability. To be 
specific, we have shown that, if n nodes are displaced at random 
in [0,l], then the r-homogeneous range assignment is connecting 

with probability at least 1-
n

l
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We also showed that r≈ d
n

ll log  is a good choice for the initial 

range assignment for nodes from which the search for an 
optimized range assignment can be initiated.  This result is useful 
to a number of existing topology control algorithms that require 
each node to search for its proper transmission range.  Such a 
search could itself consume a great deal of energy without a good 
initial starting value. 
The results presented in this paper also indicate that a degree of 
log l is a topological parameter closely related to the 
connectedness of the communication graph. The extent to which 
this relation can be exploited in the development of simple local 
topology control mechanisms is a matter of ongoing research. 
This relation also suggests an interesting analogy between our 
probabilistic analysis and the random graph model [7]. In the 
theory of random graphs, it has been shown that if the expected 
number of neighbors of a node is slightly above log n then the 
graph is connected with high probability, while in our model a 

high probability of connectedness appears to require log l 
neighbors. Hence, the connectedness of a random graph in our 
model depends on a geometric parameter, rather than on the 
number of nodes in the graph. This observation confirms our 
feeling (which is supported also by the discussion in [2]) that the 
classical theory of random graphs is not adequate to study ad hoc 
networks, and validates the model proposed in this paper as a 
promising alternative to classical random graphs theory and to the 
Random Network Model proposed in [2]. 
A final comment concerns the accuracy of the model presented in 
this paper. Although it is known that distance alone does not 
faithfully model the propagation of the radio signal in the air, we 
believe that the basic nature of the results would not change if 
more detailed propagation models were considered. Our feeling is 
supported by the simulation results presented in [18], where the 
performance of an energy-efficient routing protocol called GAF is 
evaluated using two different propagation models: the 
tworayground model, which corresponds to the model used in this 
paper, and the shadowing model, which accounts also for multi-
path effects (fading). The simulation results show that the 
performance of GAF is not significantly impacted by the choice of 
the propagation model. 
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APPENDIX 
Proof of Theorem 1. 
We report the proof for the case d=1. The proofs for the cases d=2 
and d=3 are similar. 

The limit is a 1∞ indeterminate form, which can be reduced to the 
indeterminate form 0/0 by taking the logarithm. We have: 
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which, since r∈o(l), is a 0/0 indeterminate form. We apply the 
first l’Hopital’s rule, obtaining: 
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which, given that r∈o(l), can be rewritten as: 
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The value of (2) depends of the magnitudes of r and n with 
respect to l. Assume rn∈Θ(l); then r/l∈Θ(1/n) and (2) equals –C 

for some positive constant C. Hence, 
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Assume now rn<<l; then r/l<<1/n and (2) equals 0, thus implying 
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Proof of Theorem 3. 
Using an equality ln(1-x)=-x-ϕ(x), where ϕ(x)=o(x) and ϕ(x)≥0 for 
x≥0, we obtain: 
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proved.  � 


