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Abstract—This paper considers the problem of scheduling
the maximum number of streams in a single time slot under
the MIMO degrees of freedom (DOF) model, when all links
are in a single collision domain. In the DOF model, nodes
can use degrees of freedom provided by their antenna arrays
to multiplex multiple streams on a single link and/or cancel
interference between concurrently transmitting links. Given a
set of links with data to transmit that are free of primary
interference, we provide optimal constructions for both the
case where only spatial reuse (from interference cancellation)
is allowed and the case where both spatial reuse and spatial
multiplexing can be done simultaneously. Our analysis allows
deriving clean throughput performance trends when the number
of available DOFs is arbitrarily increased. These trends show that
combining spatial multiplexing with spatial reuse can arbitrarily
increase throughput compared to spatial reuse only, and that
close to two-fold throughput increases can be achieved compared
to spatial multiplexing only. Finally, we show how the approach
can be extended to deal with primary interference and optimally
solve the one-shot stream scheduling problem for an arbitrary
set of MIMO links in a single collision domain.

I. INTRODUCTION

MIMO antenna technology promises to revolutionize wire-
less networks by substantially increasing link throughput,
boosting signal strength, and increasing transmission range.
The potential of MIMO is beginning to be realized in wireless
LANs with the availability of 802.11n components. However,
the use and optimization of MIMO links in a broader network
setting is only now beginning to be considered. In this paper,
we consider how MIMO antennas with capability to cancel
interference from competing links can be used to optimize
network-wide performance. We focus on optimizing overall
network throughput through the combination of spatial reuse
and spatial multiplexing, enabled by the interference cancel-
lation (IC) capability provided by MIMO.

MIMO can be used to achieve several capabilities, pri-
marily individually but potentially in combination, as well.
The individual capabilities provided by MIMO are: 1) spatial
diversity, wherein the different paths between the multiple
transmit and receive antenna elements are used to provide
robust signal strength in the presence of fading in some
of the paths, 2) spatial multiplexing, wherein the multiple
paths are used to transmit a linear combination of multiple
independent data streams that can then be individually decoded
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from the multiple signals provided by the receive antenna
elements, and 3) spatial reuse, wherein multiple MIMO links
that would otherwise destructively interfere with each other
can transmit concurrently by using some antenna elements
to cancel interference from the competing links. Note that
spatial diversity can have an indirect benefit on throughput
by maintaining the higher data rates enabled by improved
signal to noise ratios. However, in this paper, we focus on
the throughput benefits that can be achieved from increased
spatial reuse and spatial multiplexing.

The specific problem we consider is: given a set of MIMO
links with data to transmit, how can a set of transmitting
links be chosen and the antenna elements of those links be
allocated between spatial multiplexing and interference cancel-
lation (to permit spatial reuse) so as to maximize achievable
throughput? We consider a setting wherein all links are in
the same collision domain, i.e. if interference cancellation is
not done, no two links will be able to transmit concurrently,
and channel state information (CSI) for all links is available
at both transmitters and receivers. Within this setting, we
solve the considered problem exactly. To be specific, we
analytically derive upper bounds on the throughput increases
that can be provided by spatial reuse and spatial multiplexing,
both individually and in combination, and we provide specific
designs that achieve these upper bounds exactly.

II. RELATED WORK AND CONTRIBUTION

Prior work exists on the characterization of the capacity
of wireless MIMO networks. Jafar [9] obtained an expression
for the maximum throughput for a two user non-degenerate
MIMO Gaussian interference channel with M1, M2 (respec-
tively) antennas at transmitters 1, 2 and N1, N2 antennas at the
corresponding receivers. Here, perfect CSI is assumed at both
receivers. The transmitters possess channel knowledge only
of the communication links with which they are associated.
In [8], Jafar et.al. show that the number of streams in the
K-user MIMO channel can scale linearly with the number
of users when the technique of interference alignment is
used. However, this requires full cooperation between all
transmitters and full cooperation between all receivers. We
consider only the non-cooperative MIMO case.

Another interesting work in this area is [2] where the
authors characterize the benefits of cross-layer optimizations in
interference limited wireless mesh networks with MIMO links.
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They formulate a framework where data routing at the protocol
layer, link scheduling at the MAC layer and stream control
at the physical layer can be jointly optimized for through-
put maximization in the presence of interference, and then
develop an efficient algorithm to solve the resulting through-
put optimization problem subject to fairness constraints. An
information theoretic approach is adopted in [5]-[8] where
the capacity of a multi user Gaussian interference channel
is bounded. Work on MIMO broadcast includes [3], [14],
where multiuser interference is cancelled at the transmitter
by Dirty Paper Coding, which is of theoretical importance
but is considered impractical due to high complexity. Prior
work on interference cancellation (IC) of multiuser MIMO
systems has mainly focused on the uplink [10], [12]. However,
because of the need for inexpensive mobile units with low
complexity of realization, closed loop MIMO systems have
been studied where CSI is known at the transmitter of the
base station. In related work, multi-user precoder designs [19],
[4] can serve multiple mobile units over the same frequency
in such a way that co-channel interference is mitigated. The
primary issue of IC is balancing the need for high received
signal power for each user against the interference produced
by the signal at other receivers. Several different IC algorithms
exist. While the basic idea behind these is the same, namely
the use of CSI to predict and then counteract the interference
produced at each node in the network, they achieve different
performance objectives. Typical performance criteria include
zero-interference transmission, minimum transmit power sub-
ject to a minimum signal-tointerference plus noise ratio at
each receiver, or maximum throughput subject to a given
transmit power constraint. Two commonly implemented IC
techniques are the minimum mean squared error (MMSE) and
the zero forcing (ZF) beamformers. MMSE does not null those
interferers which are below the noise floor, it merely ignores
them. ZF instead completely nulls all interferers irrespective of
their strengths. For the greater part, existing literature assumes
CSI to be available only at the receivers. Transmitters possess
no CSI. In other cases, CSI is assumed at the receivers, with
transmitters possessing CSI only of the specific communica-
tion link(s) they are associated with. This is a suitable model
for cellular networks where fast channel dynamics and node
mobility make it impractical for channel information to be fed
back at the desired rate. Our model however, deviates from this
trend by assuming perfect CSI of all communication links as
well as of all interfering links at every receiver and transmitter.
This is a reasonable assumption, e.g., for the backbone of a
wireless mesh network, where nodes are fixed and channel
conditions do not change rapidly. Periodic measurement and
sharing of channel states by receiver nodes and feedback
to every transmitter node is thus a feasible system design.
The work that is most closely related to ours is [6], where
the authors study the throughput of a multi-hop wireless
MIMO network. Similarly to our work, they assume that
perfect CSI is available at both receivers and transmitters. The
authors cast the problem of optimal throughput determination
as an IP formulation, whose solution is upper bounded by

the corresponding LP formulation. This upper bound is used
to numerically characterize throughput performance under
different MIMO usages (spatial reuse, spatial multiplexing,
and their combination). Differently from the results reported
in [6], our approach is fully analytical, and provides a simple
closed-form expression for the optimal throughput. On the
other hand, our approach considers a restricted, single-hop
collision domain, while the results reported in [6] are more
general and consider multi-hop flows. Quite interesting, our
analytical results qualitatively confirm the main findings of the
numerical evaluation reported in [6] in terms of the relative
throughput gains when spatial reuse is combined with spatial
multiplexing (see Section VI).

III. BACKGROUND AND SYSTEM MODEL

An example of MIMO interference cancellation is done by
the zero forcing (ZF) beamformer, which is a linear technique.
The ZF beamformer [1] is given by the MR×MT matrix C =
(H∗H)−1H∗, where MT is the number of antenna elements at
transmitter, MR is the number of antenna elements at receiver,
H is the MR × MT channel matrix, and H∗ is its conjugate
transpose. Matrix C is used to either pre-process the transmit
signal at the transmitter end, or to post-process the receive
signal at the receiver end. In the former case, we say that the
transmitter nulls interference at receivers, while in the latter
case, we say that the receiver suppresses interference from
transmitters.

There are three key benefits to using transmit and receive
arrays in a communication link:

1) The ability to mitigate interference.
2) The ability to spatially multiplex several data streams

onto the MIMO channel.
3) The ability to mitigate small scale fading (a.k.a. spatial

diversity).
It is important to note that these benefits cannot be fully

realized simultaneously through linear processing. An antenna
array (either transmitter or receiver array) with linear process-
ing that mitigates interference has a diminished capacity in the
number of spatially multiplexed streams that it can decode and
in its ability to combat fading, and vice-versa. For a transmit or
receive array, this tradeoff is summarized by the conservation
theorem, which states (see pg.548, [1])

diversity order = M − NS − NI + 1 ≥ 1

Here, M is the number of antenna elements in the array
(either transmitter or receiver array), NS is the number of
spatially multiplexed streams supported by the MIMO link,
and NI is the number of interferers (interfering transmit
antenna elements) that must be suppressed by the array if
it is a receiver or the number of interfering receive antenna
elements at which its signal must be nulled if it is a transmitter.
Note that the number of antenna elements that must be used
to handle interference is dependent on the number of streams
being transmitted on the interfering (or interfered-with) link,
rather than the number of streams being transmitted on the
array’s own MIMO link.



Since the diversity order should be at least one, we have

M ≥ NS + NI

The size of an antenna array therefore must be at least
equal to the sum of the number of data streams that it sup-
ports and the number of interfering streams that it mitigates.
This corresponds to the so-called degrees of freedom (DOF)
model [6], [13], wherein antenna elements provide DOFs that
can be divided arbitrarily between stream multiplexing and
interference cancellation. Note that in the DOF model, the term
”degree of freedom” is used to refer to an antenna element
on either the transmitter or receiver, which can be used to
support multiplexing of a stream on the link or cancellation
of interference with another link. This usage of the term is
different from some other work, e.g. [9], [8], in which the
number of DOFs refers to the number of streams that can be
supported.

There is thus an evident symmetry between transmitters
and receivers in terms of the usage of available degrees
of freedom in supporting spatially multiplexed streams and
in mitigating interference. This is seen by considering two
interfering MIMO links each carrying s1 and s2 data streams
respectively. Suppose that the transmitter of link 1, T1, nulls
itself at the receiver of link 2, R2. In order to avoid putting
any energy from T1 at the interfering s2 elements of R2, T1

requires s2 degrees of freedom to project its transmit vector
into the space that is orthogonal to the space spanned by the
MRC weights of each of the s2 selected antennas at R2. The
constraint on the size of T1 is therefore MT1 ≥ s1 + s2.
On the other hand, suppose that R2 suppresses the s1 data
streams from T1. This would impose s1 constraints on the
receive vector. The constraint on the size of R2 is therefore
MR2 ≥ s1 + s2. Hence, irrespective of whether interference
cancellation is done by a transmitter or a receiver, the same
constraint on the array size is felt.

Assumptions used in this paper are as follows:

1) Perfect CSI of communication and interfering links is
available at all transmitters and receivers.

2) All links are in the same collision domain. By the same
collision domain, we mean that any two links that are
being used simultaneously will each cause the other’s
transmission to fail unless interference between them is
canceled.

3) Transmitters and receivers are both capable of interfer-
ence cancellation.

4) Interference cancellation is coordinated such that, for
any link l1 interfering with another link l2, either the
transmitter of l1 nulls its signal at receiver elements of
l2 or the receiver of l2 suppresses the signal from the
transmitter of l1, but not both.

5) Primary interference has been eliminated, i.e. the set of
links with data to transmit is free of primary interference.
(This assumption is removed in Section V-E.)

6) All links have identical transmit and receive arrays, in
terms of their sizes and signal processing capabilities.

Several of these assumptions deserve discussion. As men-
tioned in Related Work, Assumption 1 is reasonable to achieve
with periodic channel measurement in a slowly-changing
environment, e.g. a network without mobility and a not too
dynamic external environment. A good example of such an
environment is a wireless mesh network backbone, where all
nodes (mesh routers) are in fixed locations. Note that this
assumption is unstated but implicit in all prior works that
have used the DOF model, e.g. [6], [13]. Perfect interference
cancellation, as assumed in the DOF model, is possible only
with CSI for the interfering link.

While we deal herein with the single collision domain case
(Assumption 2), our results could be used as a component of
an analysis of a larger multihop network, where our compo-
nent solution characterizes the optimal throughput achievable
within a finite region constituting a single collision domain of
the larger network.

Assumption 4 can be realized in several ways. One in-
volves communicating control information between coordi-
nating links and would add additional overhead resulting in
degraded throughput relative to the results derived herein.
However, we envision a spatial-reuse TDMA (STDMA) ap-
proach [11], which is a realistic possibility for small to
medium scale mesh networks (c.f. 802.16 [7]), wherein
all communications and interference cancellations are pre-
computed and allocated to specific communication slots. With
periodic distribution of such a schedule to all nodes in the
network, achievable throughput converges toward the results
derived herein as the scheduling period increases. It is impor-
tant to note that we do not assume node cooperation, as done
for example in cooperative MIMO. In cooperative MIMO,
nodes cooperate in their data transmissions. Here, we assume
only that channel state information is disseminated in some
way, but data transmissions are strictly pair-wise.

Finally, Assumption 6 is suitable for homogeneous wireless
networks. Again, a good example would be a wireless mesh
backbone, where all backbone nodes use the same hardware.
The heterogeneous case, where transmit and receive arrays are
of different sizes, is a subject for future work.

The following quantities are defined in developing the
system model.

k = number of antenna elements at each transmit
and receive array

l = number of active links

s = l × 1 throughput vector containing the number
of data streams carried by each link

w(A) = weight of matrix or vector A (sum of all entries)

sm = optimal s vector (having maximum weight)

WT = total amount of work (number of links on which
IC is performed) done by all transmitters

WR = total amount of work done by all receivers

The optimal throughput is therefore Smax = w(sm). Note
that we omit link data rate in the throughput expression. This
is because, in this paper, we focus on spatial multiplexing



(SM) and spatial reuse (SR) only, while not considering using
MIMO for improving spatial diversity (and, hence, perceived
SNR values at receivers). If only SM and SR are exploited,
the rate on a single stream can be considered as a constant,
and optimal throughput is then achieved when the maximum
number of streams are successfully activated (the general case
where different streams have different rates is the subject of
ongoing research).

In the following sections, we report details of the following
analyses:

1) When only SR is performed, i.e. when each link carries
only one data stream, we obtain an analytical expression
for the optimal throughput or equivalently the number
of links that may be active simultaneously.

2) When only SM is performed, our single collision domain
assumption implies that the optimal solution can be
trivially computed: only a single link is active, and k
streams are sent along the active link, which yields an
optimal throughput of k, independently of the number l
of links to schedule.

3) When both spatial reuse and spatial multiplexing are
performed together, we obtain an analytical expression
for the optimal throughput as a function of the number
of simultaneously active links.

4) Moreover, at this optimal point, we determine how the
work of interference cancellation is distributed among
all the transmitters and receivers.

IV. SPATIAL REUSE ONLY

With spatial reuse only, each active link supports only one
stream. Transmitters can use their remaining DOFs to null the
signal at some receivers, and receivers can use their remaining
DOFs to suppress interference from some transmitters. Thus,
Smax = l. We now find the maximum number of links that
can be active simultaneously without any collisions.

Lemma 1: The number of links that can be active simulta-
neously without collision is at most 2k − 1.

Proof: Assume l = 2k−1+x for integer x > 0. We show
by simple counting that there are not enough DOF’s to allow
l links to be active simultaneously. Let DOFA be the total
number of DOFs available among the l links. Since transmitter
and receiver arrays have size k, DOFA = l·2k = (2k−1+x)·
2k = 4k2−2k+2kx. Let DOFR be the total number of DOFs
required to allow the l links to be active. Each transmit-array
and receive-array uses one DOF to support the single data
stream. The interference generated by each transmission must
be canceled out for every other link, either by the transmitter
or by the other link’s receiver. Thus, DOFR = 2.(2k − 1 +
x)+(2k−1+x) ·(2k−1+x−1) = 4k2−2k+4kx+x2−x.
Since x > 0, DOFR > DOFA and there is no way for these
transmissions to succeed simultaneously.

We now show that the upper bound of 2k−1 simultaneously
active links is achievable.

Lemma 2: There is an assignment of MIMO weights that
will allow l links to be active simultaneously without collision,
if l ≤ 2k − 1.

Proof: : With MIMO links having antenna array size of
k, the transmitter on an active link can set its weights so as to
null its transmitted signal at an arbitrary set of k−1 receivers.
Similarly, the receiver on an active link can set its weights
so as to suppress interference from an arbitrary set of k − 1
transmitters.
Case 1: l ≤k

In this case, each transmitter can null its signal at every
other receiver, thus completely eliminating interference.
Case 2: k + 1 ≤ l ≤ 2k − 1

Let l = k + x, where 1 ≤ x ≤ k − 1. All additions and
subtractions in the following are taken modulo (k+x). Let the
links be denoted by l0 = (t0, r0), l1 = (t1, r1), . . . , lk+x−1 =
(tk+x−1, rk+x−1). Consider the following use of MIMO
weights. Each transmitter ti sets its weights to null its signal
at receivers ri+1, ri+2, . . . , ri+k−1. This uses all remaining
DOFs at the transmitters. However, transmitter ti will still
interfere at receivers ri+k, ri+k+1, ..., ri+k+x = ri−1. Thus,
each of those receivers must use one of their DOFs to suppress
the signal from ti. Assume that each receiver attempts to
suppress every transmitter that has not nulled its signal at
that receiver. Since k − 1 transmitters will null their signals
at a given receiver and the transmitter on the receiver’s link
should not be suppressed, this leaves l−k transmitters for the
receiver to suppress. The receiver has k − 1 DOFs to use for
suppression. Since l−k = k+x−k = x ≤ k−1, each receiver
has enough DOFs to suppress every remaining interfering
transmitter. Therefore, all links can be active simultaneously
without collision.

An example of the construction of Lemma 2 is shown in
Figure 1 for k = 3 and l = 2k − 1 = 5. In this figure, each
link (including its transmitter and receiver) is depicted in a
different color. Edges depict DOFs being used by transmitters
or receivers and are assigned the same color as the node that is
using its DOF. Each receiver has 2 different-colored incoming
edges, indicating that the transmitters of those colors are using
their DOFs to null their signal at that receiver. In addition,
each receiver has 2 outgoing edges of its own color, which
represent the use of its remaining DOFs to suppress certain
transmissions. Finally, note that the outgoing edges from each
receiver terminate at exactly the nodes whose colors are not
represented by incoming edges to that receiver, i.e. the receiver
is suppressing interference from all interfering transmitters that
did not null their incoming signals to it.

Theorem 1: The optimal throughput with l MIMO links,
each having array size k, in a single collision domain with
spatial reuse only is:

w(sm) =
{

l if l ≤ 2k − 1
2k − 1 if l > 2k − 1

Proof: The theorem follows directly from Lemmas 1
and 2 and the fact that, with spatial reuse only, there is one
stream per active link.

V. SPATIAL REUSE AND SPATIAL MULTIPLEXING

When it is possible to use both spatial reuse (SR) and
spatial multiplexing (SM) with MIMO links, the optimal way



Fig. 1. Optimal Construction with Spatial Reuse Only (k = 3, l = 5)

Fig. 2. Interference Cancellation between Two Links li and lj

to use the MIMO DOFs is not obvious. The transmitters and
receivers of a given link could use their DOFs to multiplex
several streams, thereby increasing the link data rate, or they
could use their DOFs to cancel interference, thereby allowing
more links to be simultaneously active. Of course, one obvious
case is when l = 1. In this case, there is no interference
and the link can use its full multiplexing potential to support
k data streams, resulting in a throughput of k. However, it
is only about half of the maximum throughput achievable
with spatial reuse only, which is (2k − 1). Thus, the use of
multiple simultaneously active links can increase throughput,
even when spatial multiplexing is allowed. However, in this
situation, IC will be necessary, meaning that it is not possible
to use all DOFs to achieve spatial multiplexing.

A. Lower Bound on Achievable Throughput

The following theorem provides a constructive lower bound
on throughput when both SR and SM are performed.

Theorem 2: Assume 1 ≤ l ≤ 2k−1, and let l′ be the largest
integer not greater than l for which 2k

l′+1 is an integer. Then
there exists an assignment of MIMO weights that can support
l’ 2k

l′+1 simultaneously active streams without collisions when
spatial reuse and spatial multiplexing are both used.

Proof: Case 1: 2k
l+1 is an integer

Let the links be denoted by l0 = (t0, r0), . . . , ll−1 =
(tl−1, rl−1). Assign 2k

l+1 streams to every link. The total
number of streams is l 2k

l+1 , which matches the number in
the theorem. Now, consider interference between two arbitrary
links li and lj . li can eliminate interference between these links
(in both directions) by using 2k

l+1 degrees of freedom at both
ti and ri.

This situation is depicted in Figure 2. The total number
of bi-directional interference cancellations a given link can
achieve in this manner is

k− 2k
l+1

2k
l+1

= l−1
2 . Note that in the case

under consideration, l must be odd so that this value is an

Fig. 3. Interference Cancellation Assignment for l = 7

integer. So, any given link can cancel interference in both
directions with exactly l−1

2 other links and will completely
use its DOFs to do so. Interference must be canceled between
all

(l
2

)
= l · l−1

2 pairs of links. Since each link can cancel inter-
ference with l−1

2 others, the number of possible cancellations
matches the number required.

We now give an exact assignment of interference cancella-
tions that will allow these l links to be simultaneously active.
All additions and subtractions are modulo l. For any given
link li, use the DOFs at its transmitter and receiver to cancel
interference with li+1, li+2, . . . , li+ l−1

2
. An example of this

assignment for l = 7 is shown in Figure 3. Now, consider an
arbitrary link lj , with j %= i. We claim that with the given
assignment, interference is cancelled between li and lj . If
j ≤ i + l−1

2 then this is true from li’s DOF assignment. So,
consider the case where j > i + l−1

2 . Then, it must be true
that i ≤ j + l−1

2 (recall that l is odd and arithmetic is modulo
l). Thus, in this case, lj will have been assigned to cancel
interference with li. Since li and lj are arbitrary links, this
implies that all pairs of links are covered by this assignment,
and all interference is cancelled. This can be seen in the
Figure 3 example where each link has exactly one incoming
or outgoing edge connecting it to every other link.

Case 2: 2k
l+1 is not an integer

In this case, the theorem states that l′ 2k
l′+1 streams can be

simultaneously active, where l′ is the largest integer smaller
than l for which 2k

l′+1 is an integer. Here, we can simply apply
the Case 1 construction for l = l′and leave the remaining l−l′

links unused, and the theorem’s statement is true.
Note that plugging l = 2k − 1 into Theorem 2 yields a

number of simultaneously active streams equal to 2k − 1.
This is the same value that results from the construction of
Lemma 1 for spatial reuse only. In fact, the construction of
Theorem 2 degenerates to spatial reuse only in this limiting
case. However, for a smaller number of links, Theorem 2’s
construction allows for a higher number of active streams than
with spatial reuse only in most cases. For example, Table I
compares the number of active streams achievable for the two
scenarios when k = 8.

The next sections provide a matching upper bound to
the achievable throughput for odd values of l. The optimal
throughput will be shown to be achieved when the work
of interference cancellation is equally distributed among all



No. of links 1 3 5 7 9 11 13 15
No. of streams(SRO) 1 3 5 7 9 11 13 15
No. of streams (SR+SM) 8 12 12 14 14 14 14 15

TABLE I
NO.OF ACTIVE STREAMS WITH SR ONLY AND WITH SR+SM (k = 8)

transmitters and receivers.

B. Spatial Multiplexing with IC: A Matrix Formulation

Interference cancellation between l(l−1)
2 pairs of links (l(l−

1) cancellations total) must be done. Thus,

WT + WR = l(l − 1)

For the transmitter side, we have

si +
∑

j∈Li

sj ≤ k

where Li is the set of links at which the transmitter of link i
nulls itself. Rewrite this as

A1s ≤ k where l ≤ w(A1) ≤ l2

Similarly, for the receiver side, we have

si +
∑

j∈Mi

sj ≤ k

Mi is the set of links whose transmissions the receiver of link
i suppresses. Rewrite this as

A2s ≤ k where l ≤ w(A2) ≤ l2

Note that w(A1) = WT +l and w(A2) = WR+l. The solution
s must satisfy

A1s ≤ k and A2s ≤ k

The optimal solution is the vector with maximum weight
subject to the constraints A1sm ≤ k and A2sm ≤ k, i.e.

sm = max
A1,A2

{w(sm) → sm : A1sm ≤ k and A2sm ≤ k}

A1 and A2, however, are related. Any choice of A1 com-
pletely determines A2 and vise-versa. The relation is

{
A2(j, i) = 1 − A1(i, j) ∀i %= j
A1(i, i) = 1;A2(i, i) = 1 ∀i

(1)

Equation 1 follows from the fact that if transmitter i nulls itself
at receiver j, then receiver j need not suppress the signal from
transmitter i (coordinated IC). We therefore have

A2 = I + 1 − AT
1

The relation between the weights of A1 and A2 naturally
follows from this as

w(A1) + w(A2) = 2l + l(l − 1) = l(l + 1) (2)

The optimal solution can now be simplified as

sm = max
A1

{w(sm) → sm : A1sm ≤ k, (I+1−AT
1 )sm ≤ k}

Now, define the mapping f from two vectors s1 and s2 to
choose the vector with minimum weight as

f : {s1, s2} → 1{w(s2) ≥ w(s1)}s1 + 1{w(s1) > w(s2)}s2
where the function 1(C) = 1 if C is true and 0 otherwise. The
optimal solution amounts to maximizing the minimum-weight
vector of the two vectors s1, s2 which satisfy A1s1 = k and
A2s2 = k. This is expressed as

sm = max
A1

{
w(f(s1, s2)) → f(s1, s2) : A1s1 = k

and (I + 1 − AT
1 )s2 = k

}
(3)

Equation 3 follows because

If w(s1) > w(s2)
=⇒ w(A1) < w(I + 1 − AT

1 )
=⇒ (A1 + AT

1 )1 < (I + 1)1
=⇒ (A1 + AT

1 )s2 < (I + 1)s2 (∵ s2 is positive)

=⇒ A1s2 − (I + 1 − AT
1 )s2 < 0

=⇒ A1s2 < k

(and vice-versa with s1 and s2 interchanged.)
Now, w(A1) = l =⇒ A1 = I lxl. This represents one

extreme where the total work done by transmitters is zero, i.e.
WT = 0. All work is done by the receivers, i.e. WR = l(l−1).
In this case, A2 = 1 and w(A2) = l2. At the other extreme, we
have the transmitters creating nulls at every receiver (w(A1) =
l2, A1 = 1, WT = l(l− 1)) and the receivers doing zero work
(w(A2) = l, A2 = I lxl, WR = 0).

To find the optimal solution, we evaluate the right hand side
of Equation 3 for all A1 with weight ranging from w(A1) = l
[corresponding to WT = 0, WR = l(l − 1)] to w(A1) = l2

[corresponding to WT = l(l − 1), WR = 0]. We obtain a set
of l · (l − 1) + 1 solutions, each being maximal over the class
of matrices having a certain weight. The optimal solution is
the maximum of this set. In practice, we do not need to sweep
the weight of A1 beyond the midpoint (WT = WR = l(l−1)

2 )
up to WT = l(l − 1) because of the following property.

Lemma 3: The MIMO system under consideration is equiv-
alent to its dual configuration, obtained by reversing the
direction of every communication link.

Proof: We model transmitters and receivers identically,
i.e. transmitter and receiver arrays have equal numbers of
antenna elements and identical signal processing capabilities.
Thus, reversing the roles of transmitters and receivers and the
directions of data transfer, preserves the throughput. The roles
of A1 and A2 are then reversed, i.e. A1 is the receiver side
matrix and A2 is the transmitter side matrix.

C. Lagrange Multiplier Method of Optimization

For every value ‘w’ of w(A1) ∈ [l, l2], we apply the La-
grange Multiplier Method of optimization to find the maximal
solution

swm = max
A1

{
w(f(s1, s2)) → f(s1, s2) : A1s1 = k ,

(I + 1 − AT
1 )s2 = k , w(A1) = w

}
(4)



Finally, the optimal solution is calculated as

sm = max
w(A1)=w

{swm} (5)

We will see that this maximum occurs when w(A1) =
l(l+1)

2 . Moreover, Equation 2 gives w(A2) = l(l + 1) −
w(A1) = w(A1). Let the weights of A1 and A2 be

w(A1) = l + n where 0 ≤ n ≤ l · (l − 1)
=⇒ w(A2) = l2 − n

We have, for the transmitter side,

A1s1 = k
=⇒ s1c

T
1 + s2c

T
2 + . . . slc

T
l = k

where ci is the ith column of A1 and si is the ith element of
s1. Denoting w(ci) by Aw

i ,

s1A
w
1 + s2A

w
2 + . . . slA

w
l = kl (6)

We also have

w(A) = l + n

=⇒ Aw
1 + Aw

2 + . . . Aw
l = l + n (7)

We want to maximize the function

f(s1,A1) = s1 + s2 + . . . sl (8)

where s1 = (s1, . . . sl) and A1 = (Aw
1 , . . . Aw

l )

subject to the following two constraints:

φ(s1,A1) = s1A
w
1 + s2A

w
2 + . . . slA

w
l

−kl = 0 and

θ(s1,A1) = Aw
1 + Aw

2 + . . . Aw
l

−(l + n) = 0

This is done by the method of Lagrange multipliers as follows.
Define

F (s1,A1,λ, µ) = f(s1,A1) − λφ(s1,A1) − µθ(s1,A1)
= s1 + s2 + . . . sl − λ(s1A

w
1 + . . . + slA

w
l

− kl) − µ(Aw
1 + . . . + Aw

l − (l + n))

Then, we solve the system

δF

δsi
= 0 ∀i = 1 . . . l (9)

δF

δAw
i

= 0 ∀i = 1 . . . l (10)

φ(s1,A1) = 0 (11)

θ(s1,A1) = 0 (12)

This gives

Aw
1 = . . . = Aw

l =
1
λ

(from equation 9)

s1 = . . . = sl =
−µ

λ
(from equation 10)

l
−µ

λ

1
λ

= kl (from equation 11)

=⇒ µ = −kλ2

l
1
λ

= (l + n) (from equation 12)

=⇒ λ =
l

l + n

Finally, we have

A1 = . . . Al = (
n

l
+ 1) and

s1 = . . . = sl = k · λ = k
l

l + n

And so, the maximum value of the function f(s1,A1) = s1+
s2 + . . . + sl is

wm(s1, n) = k
l2

l + n

Similarly, for the receiver side, we obtain

wm(s2, n) = k
l2

l2 − n

Evaluating the optimal solution from equations 4 and 5
amounts to evaluating

w(sm) = max
n

{
min{wm(s1, n), wm(s2, n)}

}

= k
2l

(l + 1)

This maximum occurs at n = l(l−1)
2 . Correspondingly, λ =

2
l+1 . Therefore

w(A1) = l + n =
l(l + 1)

2

w(A2) = l2 − n =
l(l + 1)

2
Hence, optimal throughput sm occurs at the mid-point

where w(A1) = w(A2) i.e. transmitters and receivers share
work equally. Smax = w(sm) = k (2l)

l+1 = 2kl
l+1 . For this to be

integral, k should be a multiple of l+1
2 . Our analysis cannot be

completed before making the following important observation.
Note: The values of Aw

i should be integral as these are
the weights of the columns of A1, which have ‘1’ and ‘0’ as
entries. However, we have disregarded this fact and carried out
the Lagrange Multiplier Method of optimization in the Real
domain. At the optimal point (mid point), the value of the
column weights, 1

λ = l+1
2 is integral if l is odd. Furthermore,

optimal values of Aw
i yielded by the Lagrange Method are

integral also for those values of n which are multiples of l.
For all other values of n, the column weights obtained are
non-integer. Given that we have determined that the value of
min{wm(s1, n), wm(s2, n)} is strictly lower than k 2l

l+1 for all



n other than n = l(l−1)
2 , imposing the integer constraint would

only further strengthen the inequality. Therefore the approach
is justified, and we are safe in performing the optimization in
the Real domain.

D. Structure of the Matrices at Optimal Point

At the optimal point, we have w(A1) = w(A2). Moreover,
the outcome of the Lagrange Method gives the weight of
each row and of each column of A1 and A2 to be equal to
(l−1)

2 +1. This result translates to our MIMO setting to mean
that every transmitter and every receiver performs interference
cancellation with (l−1)

2 other links. That is to say, the work of
IC is equally distributed among all transmitters and receivers.
Finally, the relation A2 = I+1−AT

1 implies A1 = A2. Hence,
the transmit and receive matrices are equal at the optimal point.
We can therefore write

A1 = A2 =⇒ A1 + AT
1 = I + 1 =⇒{

A1(i, j) = 1 − A1(j, i) ∀i %= j
A1(i, j) = A2(i, j)

(13)

Equation set 13 is the Symmetry Condition. The symmetry
condition implies that if transmitter i nulls itself at receiver j,
then transmitter j will not null itself at receiver i. Instead, it
is receiver i which suppresses the signal from transmitter j.
Therefore, interference cancellation between a pair of links is
done entirely by one of the links at the optimal point.

E. Handling Primary Interference

Primary interference occurs when a station is involved in
more than one communication task at the same time (sending
and receiving, receiving from two different transmitters, etc.).
Let G = (V,E) be a subgraph of the communication graph of
the system containing all links that have data to transmit. In
general, the links of G are not free of primary interference.

A matching of G is a set of edges, where each vertex
appears in at most one edge of the matching. Thus, by
definition the links making up a matching of G are free
of primary interference. The following theorem demonstrates
that, if we obtain a maximum matching M of G and apply
our optimal construction from the previous sections to the links
contained in M , then this achieves the maximum throughput
possible among all of the links in G. This then provides an
optimal solution to the one-shot stream scheduling problem
under consideration.

Theorem 3: Let M be a maximum matching among all
links having data to transmit. Let the number of links in M be
l ∈ [1, 2k − 1] such that 2k

l+1 ∈ Z. This implies l = 2m + 1
for some m ∈ N and k is a multiple of (m + 1). Then the
optimal throughput is Smax = 2kl

l+1 .
Proof: In subsections B and C, it was proven that in

the absence of primary interference, the optimal throughput
supported by a set of l ≤ 2k − 1 links in a single collision
domain is Smax = 2kl

l+1 for odd l. Since this is an increasing
function of l, no set of links which form a matching smaller
than l (size of the maximum matching) can support a higher
throughput.

Fig. 4. (a) Communication graph in a single collision domain (b) Maximum
matching of the communication graph

n 0 1 2 3 4 5 6
wm(s1,n) 6 4.5 3.60 3 2.5714 2.25 2
wm(s2,n) 2 2.25 2.5714 3 3.60 4.5 6

w(sm) 2 2.25 2.5714 3 2.5714 2.25 2

TABLE II
OUTPUT OF THE LAGRANGE MULTIPLIER OPTIMIZATION METHOD.

Note that Theorem 3 holds only if the number of links in the
maximum matching is odd. Exactly characterizing the optimal
solution for an even number of links is an open problem,
which we are considering in future work. However, the optimal
constructions for odd numbers of links can be used to achieve
bounds on optimality for even numbers of links. For example,
in Table I, observe that for 6 links, we can achieve 12 streams
using the optimal construction for 5 links. Furthermore, the
optimal for 6 links can be no better than the optimal for 7 links,
which achieves 14 streams. Therefore, the 5-link construction
is within two streams of optimal for 6 links. Note also that as
the number of links increases, this bound gets tighter. From
the same table, we can see that the optimal construction for 7
links is also guaranteed to be optimal for 8, 10, and 12 links.
In general, if we use the optimal construction for l − 1 links
for an even l, we can get within at least 4k

l(l+2) of optimal,
which decreases in proportion to l2.

F. An Example

Consider a single collision domain with 6 links as shown
in Figure 4a. Assume all links have data to transmit. We want
to schedule the maximum number of streams possible in one
time slot across these links. Obtain a maximum matching of
size 3 as shown in Figure 4b. Thus we get the maximum
number of primary-interference-free links to be l = 3. Choose
the size of the antenna array to be k = 2. We will apply the
optimization procedure derived above to this setting in order
to find the maximal throughput and the structure of the A1

and A2 matrices at the optimal point.
The weight of A1 is swept from n = 0 to n = 6. Note the

symmetry about the mid-point, which is a result of the duality
property. For values of n smaller than the mid-point i.e. for
n < 3, we have w(A1) < w(A2). This implies WT < WR

i.e. the total work done by the transmitters in IC is less than
that done by the receivers. The number of degrees of freedom
available at the transmitters for multiplexing data streams is
therefore larger than that available at the receivers. Hence
the receiver side matrix A2 determines (imposes a stronger
constraint on) the achievable throughput. This is evident from
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Fig. 5. Optimal throughput achievable with l = 7 links and increasing number
of antenna elements, with SR only, SM only, and SM+SR MIMO systems.

Table II. On the other hand, for values of n larger than the
mid-point i.e. for n > 3, we have w(A1) > w(A2). In this
case, the achievable throughput is constrained more strongly
by the transmit side matrix A1 as seen in the table.

VI. DISCUSSION

In this section, we qualitatively compare our results with the
ones (based on numerical evaluation) reported in [6]. We stress
that the network setting considered in [6] is quite different
from ours: multi-hop flows are to be scheduled on a set of
links with arbitrary collision domains. On the other hand,
our approach assume single links to be scheduled (one-hop
flows), and all links are part of a single collision domain.
Despite the different network settings, the main qualitative
findings of [6] are fully confirmed by our analytical results.
To be specific, Hamdoui, Shin, and Jiang observe that, as the
number of antenna element increases, the maximum achievable
throughput first raises and then flattens out asymptotically
under SRO, while it increases “almost” linearly under SMO
or SR+SM. As seen from Figure 5, this behavior can be
observed also when the results derived in this paper are
extended to arbitrarily large values of k: in case of SRO, the
throughput increases when relatively few DOFs are available;
once the available DOFs are sufficient to null/suppress all
interference, the optimal throughput flattens to the optimal
value of l, corresponding to scheduling one stream on each
possible link. In case of SMO, only one link can be active
at a time. Hence, optimal throughput increases linearly with
k, which corresponds to the maximum possible number of
streams that can be transmitted on the active link. In case of
SM+SR, additional throughput benefit (near two-fold) can be
achieved by combining the two MIMO techniques. It is also
worth observing that when relatively few DOFs are available
(k ≤ 5), all DOFs are used to mitigate interference (SRO and
SM+SR curves are overlapped); as the number of available
DOFs increases, interference mitigation can be combined with
spatial multiplexing to achieve considerable throughput gains
over the SRO and SMO approaches.

VII. CONCLUSIONS

For spatial reuse only, we obtained an expression for the
maximum throughput of a single-hop network as a function
of the number of links and antenna array size. For spatial
reuse and spatial multiplexing, we derived algebraically an

expression for the maximum throughput when the number of
links is odd. We showed that optimum throughput is achieved
when the work of interference cancellation is shared equally
between every transmitter and every receiver, and therefore
all links multiplex the same number of streams. Moreover, we
showed that at the optimum point, the interference between
every pair of links is canceled entirely by one of the links.
That is, if the transmitter of a given link nulls itself at the
receiver of an interfering link, then the receiver of the given
link will suppress the signal from the transmitter of the in-
terfering link. Finally, we showed that the optimal throughput
obtained with spatial multiplexing and spatial reuse combined
(Smax = 2kl

l+1 ≈ 2k streams) is approximately twice what it is
with spatial multiplexing only (single link with k streams).
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