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Abstract—The problem of distributed diagnosis in the presence of dynamic failures and repairs is considered. To address this

problem, the notion of bounded correctness is defined. Bounded correctness is made up of three properties: bounded diagnostic

latency, which ensures that information about state changes of nodes in the system reaches working nodes with a bounded delay,

bounded start-up time, which guarantees that working nodes determine valid states for every other node in the system within bounded

time after their recovery, and accuracy, which ensures that no spurious events are recorded by working nodes. It is shown that, in order

to achieve bounded correctness, the rate at which nodes fail and are repaired must be limited. This requirement is quantified by

defining a minimum state holding time in the system. Algorithm HeartbeatComplete is presented and it is proven that this algorithm

achieves bounded correctness in fully-connected systems while simultaneously minimizing diagnostic latency, start-up time, and state

holding time. A diagnosis algorithm for arbitrary topologies, known as Algorithm ForwardHeartbeat, is also presented.

ForwardHeartbeat is shown to produce significantly shorter latency and state holding time than prior algorithms, which focused

primarily on minimizing the number of tests at the expense of latency.

Index Terms—Distributed diagnosis, dynamic failures, fault tolerance, synchronous systems.

�

1 INTRODUCTION

AN important problem in distributed systems that are
subject to component failures is the distributed

diagnosis problem. In distributed diagnosis, each working
node must maintain correct information about the status
(working or failed) of each component in the system. In this
paper, we consider the problem of achieving diagnosis
despite dynamic failures and repairs. Previous work has
almost exclusively dealt with the static fault situation
wherein statuses of nodes remain fixed for as long as it
takes an algorithm to completely diagnose the system.
While a few works have attempted to consider dynamic
events, no formal models have been developed and so
correctness proofs and algorithm evaluations inevitably
have reverted to the use of static models.

We present a formal model of dynamic behavior, which
allows us to rigorously define what it means for a diagnosis
algorithm to be correct in dynamic situations. This notion of
correctness, referred to as bounded correctness, consists of
three properties: bounded diagnostic latency, bounded
start-up, and accuracy. For bounded diagnostic latency, all
working nodes must learn about each event (node failure or
repair) within a bounded time L. For bounded start-up,
nodes that recover must determine a valid state for every
other node within time S of entering the working state.
Finally, accuracy ensures that no spurious events are
recorded by any working node.

The specification of bounded correctness represents a
strengthening of the properties required for a solution to the
diagnosis problem. To our knowledge, no prior distributed

diagnosis algorithm has been formally proven to achieve
properties as strong as those of bounded correctness in the
presence of truly dynamic failures and repairs. We present
herein the first algorithms for distributed diagnosis that are
rigorously proven to be correct in dynamic fault situations.
Furthermore, evaluation of prior algorithms shows that our
algorithms achieve significantly shorter diagnostic latency
while tolerating substantially higher event rates than
previous ones. We show in the next section that previous
algorithms, by focusing almost exclusively on minimizing
the number of tests performed, have unintentionally made
themselves quite vulnerable to dynamic environments.

2 RELATED WORK

The bulk of the work in system diagnosis has assumed a
static fault situation [3], [9], [17], [18], [20], [23], i.e., the
statuses of nodes do not change during execution of the
diagnosis procedure. Some diagnosis algorithms, e.g., [5],
[13], [19] allow dynamic failures and repairs to occur, but
are only guaranteed to be correct when system status has
become stable. One of the diagnosis algorithms in [4]
assumes that nodes can fail dynamically, but cannot be
repaired during execution of the diagnosis procedure. This
approach is suitable in some systems, but is not a
satisfactory solution in general. The diagnosis model of
[14] considers dynamic failures but requires a centralized
diagnosis entity.

Previous work on distributed diagnosis has focused
almost exclusively on minimizing the number of tests
performed. One interesting result of our work is to show that
the goal of minimizing tests and the goal of effectively
handling dynamic failures and repairs are directly in conflict.
Prior algorithms that minimize the number of tests construct
sparse testing graphs and propagate information in reverse
direction of tests. The ideal testing property for which these
algorithms strive is to have each node tested by exactly one
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other node at each testing round. With dynamic failures and
repairs, the latency and the minimum time a node must
remain in aparticular state canbeashighas ðn� 1ÞT ,wheren
is the number of nodes in the network andT is the duration of
a testing round. Experiments in [5] on networked systems
were conducted with parameters of n ¼ 60 and T ¼ 30
seconds, which yield a diagnostic latency and state holding
time of about 30 minutes when dynamic environments are
considered. The above result holds for all of the following
algorithms: ADSD [5], BH [2], Adapt [24], and RDZ [19].
Other relevant algorithms such as Hi-ADSD and its variants
[8], [9] have latencies of at least log22 n rounds, which are still
far greater than Algorithm HeartbeatComplete.

Since we assume testing is accomplished via heartbeat-
based mechanisms which have low cost, we are not so
concerned with the number of tests. Rather, we try to
minimize diagnostic latency and state holding time in
dynamic fault environments for both completely-connected
and not-completely-connected networks. Our algorithm for
completely-connected networks, known as Algorithm
HeartbeatComplete, has a latency of approximately one
heartbeat transmission round1 and a state holding time of
about half a round. Our algorithm for not-completely-
connected networks, known as Algorithm ForwardHeart-
beat, has both latency and state holding time equal to
approximately one round. Thus, both algorithms are
capable of very fast propagation of events and they work
in highly dynamic environments.

A problem closely related to distributed diagnosis,
known as the synchronous group membership problem
[6], [7], [11], [12], [15], is for each working node to maintain
correct information about the group of working nodes with
which it can communicate, and for all nodes in one group to
agree on the membership of the group. In [12], it is shown
that, under some models, these two problems are equiva-
lent and an algorithm for one problem can be converted to
an algorithm for the other. The primary difference between
the two approaches is the requirement of agreement among
nodes in the group membership problem, while agreement
is not required in distributed diagnosis.

Our work is closest to the approach taken in [6], where
there is no limit on how many nodes can change state
during execution of the algorithm, but there is a limit on
how frequently an individual node can change state. The
algorithm of [6] guarantees that working nodes make
identical membership changes at the same local clock times.
To achieve this strong property, the algorithm requires
synchronized clocks and a form of atomic broadcast.
Bounded correctness can be achieved without clock
synchronization and does not require any special commu-
nication mechanisms. In addition, the work of [6] does not
derive lower bounds on state holding time and latency and,
therefore, does not address the limits of dynamic behavior
nor the optimality of the presented algorithm.

Another related area is that of failure detection. Failure
detectors are used to solve higher-level problems such as
consensus and atomic broadcast in asynchronous and
partially-synchronous systems. To our knowledge, the
latest work that considers failures and recoveries is [1]. In
[1], existence of nodes that eventually are permanently
working or permanently failed is assumed. Since we do not

assume existence of such nodes in our model, all nodes are
unstable in the terminology of [1]. In [1], working nodes do
not distinguish between unstable and failed nodes. Hence,
no evaluation is done of the minimum time an unstable
node needs to be in a particular state so that its status is
accurately tracked. Diagnosis done by unstable nodes on
other unstable or permanently failed nodes is also not
considered. Last, [1] considers only asynchronous comple-
tely-connected networks.

3 SYSTEM MODEL

In this section, we present some basic definitions used
throughout the paper.

3.1 Communication Model

Diagnosis algorithms can use either unicast or multicast
communication. We assume generic parameters that could
apply to either type of communication. We also assume a
synchronous system in which the communication delay is
bounded. This is an implicit assumption in all prior work
on distributed diagnosis.

Definition 1. The send initiation time, �send init, is the time
between a node initiating a communication and the last bit of
the message being injected into the network. This includes
message set-up time on the node, any delay in accessing the
communication medium, and the time to inject all of the
message bits into the network. To simplify analysis, it is
assumed that �send init is a constant.

Definition 2. The minimum and maximum message delays,
�send min and �send max, are the minimum and maximum
times, respectively, between the last bit of a message being
injected into the network and the message being completely
delivered at a working neighboring node.

We assume that messages are encoded in such a way,
e.g., using checksums, to enable incomplete messages to be
detected and discarded. Hence, failures that occur on a
sending node in the middle of a message transmission
(prior to the last bit of the message, including the checksum,
being injected into the network) appear as omissions at
receiving nodes.

We consider both completely-connected and not-com-
pletely connected networks. In a completely-connected
network, there is a direct communication channel between
every pair of nodes. It is not difficult to show that this is a
requirement to be able to achieve bounded correctness with
an arbitrary number of node failures. In not-completely
connected networks, intermediate nodes relay messages
between some source-destination pairs. Hence, the number
of node failures is limited such that the network remains
connected at all times.

3.2 Fault Model

We consider crash2 faults in nodes. The network delivers
messages reliably. The crash fault assumption differs from
traditional work on system-level diagnosis for which the
fault model is not specified. However, the classical
assumption that tests are perfect implies some class of
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easily-detectable faults. The crash fault assumption is
necessitated by our use of heartbeat-based algorithms for
diagnosis, which have been more commonly used in group
membership algorithms. Hiltunen [12] shows how heart-
beat-based algorithms can be transformed into test-based
algorithms and vice versa. Using this transformation, our
algorithms could be easily converted to ones that use
explicit testing and the crash fault assumption could then be
loosened.

Nodes can alternate between working correctly and
being crashed in our model.3 Hence, the status of a node is
modeled by a state machine with two states, failed and
working. Failed nodes do not send messages nor do they
perform any computation. Working nodes execute faith-
fully the diagnosis procedure.

Definition 3. The state holding time is the minimum time that a
node remains in one state before transitioning to the other state.

It is important to note that, in completely-connected
networks, Definition 3 is our model’s only restriction on the
timing of node failures and repairs. Since node failures and
repairs are independent in this model, there are no
restrictions on the number of nodes that are in the failed
state at any one time nor on the number that can fail (or
recover) at the same instant. This model is, therefore,
considerably less restrictive than many of the models used
in prior work. Since we will show later that a nonzero state
holding time is required to solve the problems of interest
and this is the only assumption on failure timing in our
model, it is the least restrictive dynamic model possible for
this problem.

For not-completely-connected networks, we define the
connectivity of the network as follows.

Definition 4. The connectivity of the network, k, is the minimum
number of nodes, the removal of which can cause the network
to become disconnected.

For these networks, we assume that fewer than k nodes
are in the failed state at any given instant of time.

3.3 Time and Clock Models

Since we are interested in dynamic failure situations in
which failure and recovery timing is critical, it is imperative
that the notion of time be well defined.

Definition 5. Time that is measured in an assumed Newtonian

time frame (which is not directly observable) is referred to as

real time.

Definition 6. Time that is directly observable on a node’s clock is

referred to as clock time. The clock time of node X at real time

t is denoted by TXðtÞ.
Definition 7. While a node is in the working state, its clock

experiences bounded drift. This means that if a nodeX is in the

working state continuously during a real-time interval ½t1; t2�,
then for all real-time intervals ½u1; u2� � ½t1; t2�

j½Txðu2Þ � Txðu1Þ� � ðu2 � u1Þj � �ðu2 � u1Þ;

where � << 1 is the maximum drift rate of a clock.

3.4 Algorithm Assumptions

We assume algorithms work by use of heartbeat messages,
i.e., each node periodically initiates a round of message
transmissions to other nodes in order to indicate that it is
working.

Definition 8. Assume an arbitrary node X initiates a round of
heartbeat transmissions at real time t and remains in the
working state indefinitely afterward. X will initiate another
round of heartbeat transmissions no later than real time
tþ ð1þ �Þ�, where � is the heartbeat period.

We do not restrict algorithms to exchange status
information only by heartbeat messages. For example, a
node could send heartbeat messages to a subset of other
nodes and then rely on those nodes to relay the information
that it is working to the remaining nodes via ordinary
(nonheartbeat) messages. We do assume, however, that
heartbeats are the basic mechanism for a node to notify
other nodes that it is working.

After a node recovers, it could initiate a round of
heartbeats immediately after entering the working state or it
could wait before doing so. If the node waits, however, it
should not wait more than � in local clock time in order to
maintain the heartbeat period. This leads to the following
definition.

Definition 9. The recovery wait time for an algorithm, denoted
by W � �, is the local clock time for which the algorithm waits
after entering the working state before initiating a round of
heartbeat transmissions.

3.5 Bounded Correctness

In a system that dynamically experiences failures and
repairs and has nonzero communication delay, the view
that any node has of the system at any time is, inevitably,
out of date. To examine the limits of diagnosis algorithms,
we consider what we believe are the weakest properties that
any such algorithm should guarantee. Each working node
should have timely information about the status of every
other node, either working or failed, in the system. Any
transition between the two states on a node is referred to as
an event. The goal is for working nodes to learn about every
event in the system as quickly as possible, to have their
views of other nodes be out of date by only a bounded
amount, and to not detect any spurious events.

Formally, we represent this goal by three properties
which we collectively refer to as bounded correctness.
Specification of one of these properties requires the
following definition.

Definition 10. A state held by a working node X for another
node Y at time t is said to be T -valid if node Y was in the
indicated state at some point during the interval ½t� T; t�.

Property 1: Bounded Diagnostic Latency. Consider any event
in the system that occurs at an arbitrary real time t. Any node
that is in the working state continuously during the interval
½t; tþ L� learns about the event and records the new state of
the node that experienced the event by time tþ L, where L is
an algorithm-dependent bounded time referred to as the
diagnostic latency of the algorithm.

Property 2: Bounded Start-Up. Consider the recovery of an
arbitrary node X at real time t. If X remains in the working
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state continuously during the interval ½t; tþ S�, then at time
tþ S, X holds L-valid states for every other node in the
system, where S � L is an algorithm-dependent bounded time
referred to as the start-up time of the algorithm.

Property 3: Accuracy. Consider an arbitrary working node X
after its start-up time. Every state transition (working to failed
or failed to working) recorded by X for an arbitrary node Y
corresponds to an actual event that occurred on Y and no
single event on Y causes multiple state transitions to be
recorded on X.

Taken together, these properties ensure that after a node
recovers (or starts up for the first time), it will determine
valid state information about every other node in the
system within bounded time and from that time on it will
maintain a faithful record of events that occur on all nodes.
Bounded Diagnostic Latency ensures that no events are
missed, while Accuracy guarantees that no spurious events
are recorded.

4 COMPLETELY CONNECTED NETWORKS

4.1 Limits on Algorithm Performance

In this section, we derive lower bounds on the diagnostic
latency, start-up time, and state holding time achievable by
any heartbeat-based diagnosis algorithm in completely-
connected networks. The maximum time between two
consecutive heartbeats arriving from a continuously work-
ing node at any other node in the system sets a limit on how
early failed nodes can be identified by the absence of a
heartbeat. This is specified in the following lemma.

Lemma 1. Assume an arbitrary node Y is in the working state
continuously for sufficiently long to send two consecutive
heartbeats to another arbitrary node X. The maximum time
between the two heartbeats arriving at X, �heartbeat, is
ð1þ �Þ�þ�send max ��send min.

Proof. Suppose Y initiates the first heartbeat at time t. That
heartbeat will arrive at X at time tþ�send init þ�send min

at the earliest. By Definition 8, Y will initiate its next
heartbeat at time tþ ð1þ �Þ� at the latest. This heartbeat
will arrive atX at time tþ ð1þ �Þ�þ�send init þ�send max

at the latest. Subtracting the earliest and latest arrival
times on X yields the maximum heartbeat interarrival
time stated in the lemma. tu

Lemmas 2 and 3 provide the desired performance limits
for any algorithm.

Lemma 2. The diagnostic latency and start-up time of any
heartbeat algorithm that achieves bounded correctness are both
at least ð1þ 3�Þ�þ 2ð1þ �Þ�send max � ð1þ 2�Þ�send min.

Proof. The worst-case latency for the detection of node
Y ’s failure by node X occurs if Y fails immediately
after initiating a heartbeat to X. If t represents the
heartbeat initiation time, Y will fail at time tþ�send init

and the heartbeat will be received by X at time tþ
�send init þ�send max at the latest. Factoring in clock
drift, X must then wait ð1þ �Þ�heartbeat time on its
local clock without receiving a heartbeat before
concluding that Y has failed. Subtracting the failure
time from the latest detection time and simplifying

yields a maximum failure detection latency of ð1þ 3�Þ�
+ 2ð1þ �Þ�send max � ð1þ 2�Þ�send min.

We now analyze the latency in detecting a node’s
recovery. We assume that nodes initiate heartbeat
transmission immediately after making a transition from
the failed state to the working state because this
produces the shortest possible latency for recovery
detection. The maximum delay before a working node
receives a heartbeat from a recovered node is, therefore,
�send init þ�send max. Since �send init < �, this is shorter
than the failure detection latency derived above. Hence,
the latency is equal to the failure detection latency.

For start-up time, we also need to consider the
amount of time it takes after a node X returns to the
working state before it determines an initial status for
each other node in the system. The question here is, how
long must node X wait without receiving a heartbeat
from node Y before concluding that node Y is failed?
The worst-case occurs if a heartbeat arrived from node Y
just prior to node X’s recovery. In this case, Y must wait
for clock time ð1þ �Þ�heartbeat before it is safe to conclude
that node Y failed. In real time, this could take as long as
ð1þ �Þð1þ �Þ�heartbeat. Since this is less than the mini-
mum diagnostic latency and start-up time cannot be less
than latency, the minimum start-up time is equal to the
minimum latency derived above. tu

Lemma 3. The state holding time for any heartbeat algorithm

to achieve bounded correctness is at least ð1þ 4�Þ�=2 +

ð1þ 2�Þð�send max ��send minÞ � ��send init.

Proof. We analyze the minimum state holding time as a
function of the recovery wait time W and then minimize
the function with respect to W to determine the
minimum for any algorithm. As in the proof of
Lemma 2, we ignore �2 terms. Denote the minimum
possible state holding time by SHTmin.

After a node Y recovers from the failed state, it must
send a single heartbeat so that other nodes detect the
recovery event. Hence,

SHTmin > ð1þ �ÞW þ�send init: ð1Þ

This is the minimum time a node must remain in the

working state after making a transition into that state.
Now, consider the minimum time a node must remain

in the failed state in order for the transition into that state
to be detected. Such a transition cannot be detected if the
node returns to the working state and sends a new round
of heartbeats as early as if it had never left the working
state. The worst-case is if a node fails at time tþ�send init

immediately after successfully initiating a heartbeat to
another node X and returns to the working state in time
SHTmin. In this situation, the first heartbeat arrives at X
at time tþ�send init þ�send max at the latest. The second
heartbeat will arrive atX at time tþ�send init þ SHTmin þ
ð1� �ÞW þ�send init þ�send min at the earliest. If the
difference between these arrival times is no greater than
ð1þ 2�Þ�heartbeat, then node X cannot distinguish this
situation from one in which node Y remained in the
working state for the entire interval. This yields

SHTmin > ð1þ 3�Þ�þ 2ð1þ �Þð�send max ��send minÞ
��send init � ð1� �ÞW:

ð2Þ
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From (1) and (2), we have

SHTmin > maxðð1þ �ÞW þ�send init; ð1þ 3�Þ�þ 2ð1þ �Þ�
ð�send max ��send minÞ ��send init � ð1� �ÞW Þ:

ð3Þ

As W increases, the right-hand side of (1) monotonically
increases and the right-hand side of (2) monotonically
decreases. Furthermore, since �send init � � in practice,
the right-hand side of (1) is less than the right-hand side
of (2) when W ¼ 0. This means that the two expressions
cross for some W > 0. Thus, the right-hand side of (3) is
minimized when the right-hand sides of (1) and (2) are
equal. Setting these two expressions to be equal and
solving for W yields

W ¼ ð1þ 3�Þ�=2þ ð1þ �Þð�send max ��send minÞ ��send init;

ð4Þ

and the lemma follows.
Note that it is theoretically possible for the right-hand

side of (4) to be greater than �, which is outside the
allowable range for W . However, in practice, all the
parameters in (4) are small compared to � and the value
for W that produces the smallest possible state holding
time is approximately �=2. Even if the right-hand side of
(4) is greater than �, then from (3), SHTmin in the range
0 � W � � will be greater than its absolute minimum
and the lemma will still hold. tu
If we assume that �, �send max, �send min, and �send init are

all much smaller than �, which is likely to be true in
practice, then Lemma 3 gives the minimum state holding
time as approximately �=2. This is somewhat counter-
intuitive in that it would seem that a node should remain in
the failed state for at least � time before recovering in order
to guarantee that its failure is observed by all working
nodes. However, this analysis allows for the possibility that
an algorithm forces nodes that recover to delay sending
their heartbeats in order to extend the interarrival times of
their heartbeats on working nodes by enough to allow those
nodes to observe the failure.

4.2 An Optimal Algorithm for Bounded Correctness
in Completely-Connected Networks

In this section, we present a new heartbeat-based algorithm,
referred to as Algorithm HeartbeatComplete, for distribu-
ted diagnosis that provably minimizes diagnostic latency,
start-up time, and state holding time in completely-
connected networks.

4.2.1 Description of Algorithm HeartbeatComplete

The analysis of Section 4.1 shows that, if heartbeat messages
are sent periodically by each working node to all other
nodes with a period of �, then it is safe to declare a node to
be failed when no heartbeat is received from it within a
clock time of ð1þ �Þ�heartbeat. The pseudocode for Algo-
rithm HeartbeatComplete, which makes use of this fact is
shown in Fig. 1.

Each node executing Algorithm HeartbeatComplete uses
a broadcast mechanism to send heartbeat messages to all of
its neighbors in a single message requiring only one send
initiation. Due to the assumption that faults are restricted to
nodes, if a node successfully initiates a heartbeat, it will be

received by all of its neighbors within time �send max.
However, it should be emphasized that there are no
ordering requirements in this broadcast, e.g., it is neither
causal nor atomic, so that broadcasts sent by two different
nodes can be received in different orders on different nodes.

4.2.2 Algorithm Analysis

The following theorem states that Algorithm Heartbeat-
Complete achieves bounded correctness and characterizes
its diagnostic latency, start-up time, and state holding time.
The proof can be found in the appendix.

Theorem 1. With W � � and a state holding time of

maxðð1þ �ÞW þ�send init; ð1þ 3�Þ�þ 2ð1þ �Þ
ð�send max ��send minÞ ��send init � ð1� �ÞWÞ;

Algorithm HeartbeatComplete achieves bounded correctness

with diagnostic latency and start-up time equal to

maxðð1þ 3�Þ�þ 2ð1þ �Þ�send max � ð1þ 2�Þ�send min;

ð1þ �ÞW þ�send init þ�send maxÞ:

Corollary 1. With

W ¼ minð�; ð1þ 3�Þ�=2þ ð1þ �Þ
ð�send max ��send minÞ ��send initÞ;

Algorithm HeartbeatComplete achieves bounded correctness
with minimum diagnostic latency and start-up time while
requiring minimum state holding time.

Proof. With W as specified in the corollary, the value of the
diagnostic latency and start-up time given by Theorem 1
becomes ð1þ 3�Þ� + 2ð1þ �Þ�send max � ð1þ 2�Þ�send min,

which, according to Lemma 2, is the minimum possible.
The expression for state holding time given in

Theorem 1 is exactly the one derived in the proof of
Lemma 3. This expression was shown to be minimized
by the value of W specified in the corollary. tu
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Note that Algorithm HeartbeatComplete does not speci-
fy any value for W . The above corollary gives the value of
W that minimizes the diagnostic latency and start-up time
while requiring minimum state holding time. If minimizing
the minimum time a node must spend in the working state
is critical, then W should be set to zero.

4.2.3 Message Cost of Algorithm HeartbeatComplete

Many systems that are logically completely-connected
actually employ a bus or redundant bus structure. In such
systems, HeartbeatComplete sends one heartbeat message
per node per round, which is the minimum possible
message cost. Even if buses are not used, a single broadcast
message per node per round is generated. In networks with
efficient broadcast support, e.g., Ethernet, this cost can still
be low. In a complete network made entirely of point-to-
point links, the algorithm would generate nðn� 1Þ mes-
sages per round, which is higher than the best known
algorithms for completely-connected networks; 2n ([5]) and
2n logn ([8] and [9]). However, the cost of HeartbeatCom-
plete still represents only one message per link per node per
round in this case. Note that, to satisfy our model, any type
of logical completely-connected network must reliably
deliver all messages, and so redundant buses, redundant
links, or reliable broadcast support must be provided.

5 NOT-COMPLETELY-CONNECTED NETWORKS

5.1 Description of Algorithm ForwardHeartbeat

In this paper, we consider a restricted case where the
maximum number of nodes that can be in the failed state at
any time instant is ðk� 1Þ, where k is the connectivity of the
network as defined in Section 3, thereby ensuring that the
network remains connected at all times.

Algorithm ForwardHeartbeat follows the general princi-
ples of Algorithm HeartbeatComplete where working
nodes perform their own independent diagnoses of the
system. Working nodes periodically send heartbeats, which
are propagated throughout the network. Here, a heartbeat,
which should be understood at the conceptual level,
consists of several heartbeat messages that may be
propagating through different parts of the network at a
given instant of time. A node initiates a heartbeat by
sending heartbeat messages on all its links. These heartbeat
messages, when received by working neighboring nodes,
are in turn sent on all their links and so on resulting in the
heartbeat being propagated throughout the network.

When node X receives a new heartbeat from node Y ,
node X stores the heartbeat in a buffer replacing any older
heartbeats from node Y . If node X times out waiting for
node Y ’s next heartbeat, then node Y ’s heartbeat is
removed from node X’s buffer and node Y is diagnosed
as faulty by node X. Hence, the presence of node Y ’s
heartbeat in node X’s buffer indicates node X believes that
node Y is working. If a neighbor of node X recovers, then
node X sends the newly-recovered neighboring node all
heartbeats stored in its buffer. This ensures propagation of
heartbeats in a dynamic fault environment.

A heartbeat message consists of the following fields:

1. Node_id: The ID of the node that initiated the
heartbeat.

2. Seq_no: The physical sequence number of the heart-
beat.

3. delay: The minimum time the heartbeat message
was in the network before being received.

The Seq_no field serves to distinguish successive heart-
beats from the same node. The first heartbeat sent by a node
after its recovery has sequence number 0, the next heartbeat
has sequence number 1, and so on. When the maximum
sequence number (MAX SEQ NUM) that can be stored in
this field is exceeded, the sequence number is wrapped
around to 0. However, the logical sequence number is a
monotonically increasing quantity. Unless otherwise men-
tioned, throughout this paper, sequence numbers denote
logical sequence numbers. This simplification will hold as
long as MAX SEQ NUM satisfies a certain lower bound,
proven in Lemma 12. The Node_id and Seq_no fields
together identify the heartbeat.

When a node Y initiates a new heartbeat, it initializes the
delay field to the minimum delay that will be encountered
before the heartbeat messages could reach its neighboring
nodes and then sends them out. Also, at the same time,
node Y stores this new heartbeat in its local buffer with the
delay field set to zero. Nodes keep track of the amount of
time each heartbeat is stored in their buffers. For a heartbeat
stored locally in the originating node, the delay field will
always be 0. When a node retransmits or relays a heartbeat,
it adds to the delay field the length of time the heartbeat
was stored in its buffer and the minimum time it takes to
traverse the next hop to reach the neighboring node before
sending it out. Thus, a node keeps track of the minimum
length of time the heartbeats stored in its buffer have
existed in the network. The significance of this will be
evident in Lemma 7.

Each node maintains an array of n entries, where n is the
total number of nodes in the network. The ith entry in the
array stored in node X contains:

1. Status: Node X’s view of node i. Possible values are
failed, working, and unknown.

2. Last_seq_no: The Seq_no field of the newest heart-
beat received from node i by node X.

Algorithm HeartbeatComplete is used to diagnose
neighboring nodes by having a node X discard heartbeats
belonging to a neighboring node Y that do not arrive on the
link connecting X and Y . From now, we focus only on the
diagnosis of nonneighboring nodes.

Due to the existence of multiple paths between nodes, it
is possible that a node times out thereby detecting a fault
event and then receives a stale heartbeat. Arrival of this
stale heartbeat does not indicate a recovery event. Hence,
when nodes time out, they discard any heartbeats they may
receive from the node just diagnosed to be faulty for a
predetermined amount of time called the heartbeat rejection
time, defined below. As a result, for a genuine recovery
event to be detected, the failed state holding time should be
made sufficiently large to guarantee that no new heartbeat
message arrives during the rejection time.

Definition 11. The Heartbeat Rejection Time, denoted by Treject,

is the period of time a nodeX discards heartbeats from a node Y

after diagnosing node Y to be faulty.
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The pseudocode for Algorithm ForwardHeartbeat is
shown in Fig. 2. Texist and Ttimeout are defined in the next
section.

5.2 Analysis of Algorithm ForwardHeartbeat

We find it useful to distinguish between the working and the
failed stateholding times in caseofAlgorithmForwardHeart-
beat. Hence, we have the following definitions.

Definition 12. The working state holding time, denoted by
SHTw, is the minimum time a node remains in the working
state before transitioning to the failed state.

Definition 13. The failed state holding time, denoted by

SHTf , is the minimum time a node remains in the failed state

before transitioning to the working state.

In addition, we have the following definition.

Definition 14. The maximum number of neighbors of any node

is denoted by d.

A brief overview of the analysis is as follows: We first
prove that W must be zero in order to minimize the latency
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and state holding times. We then derive message transmis-
sion bounds: the minimum and maximum time it takes for a
heartbeat to reach all nodes that are continuously working.
Based on these values, the length of time a node waits
before timing out and diagnosing a node to be faulty
(¼ ð1þ �Þ�heartbeat in the completely-connected case) is
computed. We next calculate the maximum time a heartbeat
message can exist in the network, a parameter necessary for
further analysis. We then derive the state holding times and
Treject defined earlier. Finally, we prove that with the
derived values of state holding times, Algorithm Forward-
Heartbeat satisfies the bounded correctness properties.

Lemma 4. The minimum diagnostic latency, staleness, and the
state holding times for Algorithm ForwardHeartbeat are
achieved when W ¼ 0.

Proof Sketch. An intuitive reasoning is given here due to
space restrictions. For a complete proof, see [25].

Consider thewayheartbeatmessagesarepropagated in
the presence of node failures and recoveries. Heartbeat
messages must be guaranteed to reach all nodes that were
in the working state since heartbeat initiation. Upon
detecting the recovery of a neighboring node, nodes send
heartbeats stored in their buffers to that neighboring node.
The freshly recovered node passes them on and messages
get propagated.WithW > 0, thiswill clearly lead to a high
value for heartbeatmessagepropagation to all nodes in the
system.Hence, SHTw is required to be high so that there is
adequate time for a freshly recovered node to ”pump in”
its heartbeat to all nodes in the network. Since a node is
required to be in the failed state until all working nodes
timeout after receiving the last heartbeat sent, the failed
state holding timewill also increasewithW . Hence, for the
best case,W must be zero. tu

Lemma 5. The minimum time between a node initiating a
heartbeat and a heartbeat with the same or a higher sequence
number from the same node being received at some
nonneighboring node that is working since heartbeat initiation,
denoted by Dmin, is 2ð�send init þ�send minÞ.

Proof. Propagation time for a heartbeat from node Y to
nonneighboring node X will be minimal if X and Y are
separated by only one node.Dmin is then

2ð�send init þ�send minÞ:
ut

Lemma 6. The maximum time between a node initiating a
heartbeat and a heartbeat with the same or a higher sequence
number from the samenode being received by all nonneighboring
nodes that are working since heartbeat initiation, denoted by
Dmaxn, is dðk� 1Þðn� 1Þ �send init + ðnþ k� 2Þð�send init +
�send maxÞ � ðk� 1Þ�, where � is an arbitrary small positive
constant, if the failed state holding time,SHTf , is at leastDmaxn.

Proof. Since the failed state holding time, SHTf , is assumed
to be at least Dmaxn, any node that fails after a node Y
initiates a heartbeat cannot recover until all nodes that
are in the working state since heartbeat initiation receive
the heartbeat from node Y . Further, since the number of
nodes that can be in the failed state is limited to k� 1, the
worst-case for calculating Dmaxn is arrived at by having
only k neighbors for node Y .

The network considered for constructing the worst-
case is shown in Fig. 3. A network with connectivity k
has at least k disjoint paths between any two nodes in the
network. Here, X and Y have k disjoint paths between
them, with node Y having only k neighboring nodes. At
real time t, ðk� 1Þ neighbors of node Y (a2;1, a3;1, . . . , ak;1)
are in the failed state for time greater than SHTf . Node Y
initiates a heartbeat at time t, which is received only by
node a1;1. Node a1;1 fails just before it could forward the
complete heartbeat to its neighboring nodes, and at that
same instant one of the failed neighboring nodes of Y
(node a2;1) recovers. This node sends out a heartbeat
indicating its recovery which prompts node Y to forward
its buffered heartbeats to it. a2;1 cannot fail before it could
forward these heartbeats and a2;2 receives it. In the
worst-case, a2;1 could have the ðk� 1Þ failed nodes as its
neighbors, and one other working node (a2;2) which is
not a neighbor of node Y .

Let a2;2 fail just before it could forward node Y ’s
heartbeat to its neighbors, and at that same instant one of
the failed nodes that is a neighbor of node Y (a3;1)
recovers. This process repeats until the kth neighbor of
node Y (ak;1) recovers. No more nodes can fail because
all the k� 1 failed nodes at this point cannot recover
until Dmaxn time has elapsed.

We assume that the heartbeat that propagates through
the kth neighboring node of node Y passes through all
the remaining working nodes in the system. This is
possible if the remaining working nodes form a linear
chain between them, with each working node having its
remaining k� 1 neighbors as the nodes that are currently
in the failed state. The worst-case is thus arrived at by
having as many failures as possible during the heartbeat
propagation and by having the heartbeat reach all other
nodes in the network before reaching the final destina-
tion node.

Hence, Dmaxn reduces to the following expression:

�send init þ�send max þ�send init � �þ ðk� 2Þ½dðn� 1Þ
�send init þ 3ð�send init þ�send maxÞ � �� þ dðn� 1Þ
�send init þ 2�send init þ 3�send max þ ðn� 2kÞ
ð�send init þ�send maxÞ:

Simplifying the above expression for Dmaxn gives the
expression stated in the lemma. tu

Lemma 7. Upon receipt of a newheartbeat, the period of time anode

that is continuously in the working state waits for the next new

heartbeat before detecting a fault event, called the timeout period

Ttimeout, is ð1þ 2�Þ�þ ð1þ �ÞðDmaxn �Heartbeat:delayÞ,
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where Heartbeat.delay is the value stored in the delay field of the
last heartbeat received.

Proof. Let node Y initiate a heartbeat at real time t. That
heartbeat will arrive at node X at real time tþ
Heartbeat:delay at the earliest. Node Y initiates its next
heartbeat at real time tþ ð1þ �Þ�,whichwill reachnodeX
at real time tþ ð1þ �Þ�þDmaxn at the latest if nodeX is in
the working state at the time the heartbeat is initiated.
NodeX should not have timed out in this interval. Hence,
the timeout period Ttimeout is ð1þ �Þ½ð1þ �Þ� + Dmaxn

�Heartbeat:delay�. Since � is assumed tobevery small, this
reduces to

ð1þ 2�Þ�þ ð1þ �ÞðDmaxn �Heartbeat:delayÞ:
ut

Lemma 8. The maximum possible time a heartbeat can exist in
the network, denoted by Texist, is ð1þ 3�Þ� + ð1þ 2�ÞDmaxn

+ nð�send max ��send minÞ. A heartbeat is said to exist in the
network if either the heartbeat is propagating in the network or
the heartbeat is stored in some node’s buffer.

Proof. The worst-case is when node Y fails sometime after
sending aheartbeat so that theheartbeat issued is removed
by having nodes timeout waiting for the next heartbeat
from node Y . Let the last heartbeat issued by node Y at
time t be received by node Z which is in the working state
since time t with a delay D. Hence, node Z will timeout
waiting for the next heartbeat from node Y at time t1 ¼
tþDþ ð1þ 3�Þ�þ ð1þ 2�ÞðDmaxn �Heartbeat:delayÞ at
the latest. Consider another node X in the network such
that one of the paths connecting nodes X and Z has
k� 1 nodes in it, with all these k� 1 nodes in the failed
state. Let the k� 1 nodes be denoted by a1; a2; . . . :; ak�1. At
time t1 � kð�send init þ�send minÞ, node Z receives a heart-
beat from node a1 indicating the recovery of node a1.
NodeZ forwards thebufferedheartbeat tonodea1, adding
ð�send init þ�send minÞ to theHeartbeat:delay field. Node a1
forwards the heartbeat to node a2 because it just received a
heartbeat from node a2 indicating node a2’s recovery.
Assuming the same situation repeats itself for the
remaining k� 2 failed nodes, node X will receive a
buffered heartbeat regarding node Y at time tþ Texist =
tþDþ ð1þ 3�Þ� + ð1þ 2�ÞðDmaxn �Heartbeat:delayÞ +
kð�send max � �send minÞ.

D�Heartbeat:delay will be maximum under the
following circumstances. Assume node Y has only
k neighboring nodes. Consider the k disjoint paths
connecting node Y and node Z. At real time t, all but one
of the k neighboring nodes of node Y is in the working
state. The path between node Y and node Z that has the
working neighboring node of node Y has n� k� 1 nodes
in it. Node Y initiates a heartbeat at real time t, which is
propagated right away through the n� k� 1 nodes to
nodeZ, with the communication delay across a single link
always being�send max. Hence,maxðD�Heartbeat:delayÞ
reduces to ðn� kÞð�send max ��send minÞ. This quantity
will be the maximum because buffering time is accurately
kept track of by the nodes and the difference D�
Heartbeat:delay can be increased only by having the
heartbeat traverse as many links as possible.

The above analysis holds if � is greater than Dmaxn

� �send init � �send max ��send min. For smaller values of �,
see [25].

Substituting for maxðD�Heartbeat:delayÞ gives the
result stated in the lemma. tu

Lemma 9. The working state holding time, SHTw, is ðdðk�
3Þðn� 1Þ + 2nþ k� 6Þ�send init + ðnþ k� 6Þ�send max

� ðk� 2Þ�, where � is an arbitrarily small constant, if the failed
state holding time, SHTf , is at leastDmaxn.

Proof. Taking a hint from the Proof of Lemma 6, it is easy to

see that the network shown in Fig. 4 will give the largest

value forSHTw. Let at time t�, nodesY , a3;1, a4;1, . . . , ak;1 be

in the failed state. At time t, node Y recovers and node a1;1
fails. Doing an analysis similar to the Proof for Lemma 9

gives the result stated in the lemma. The time taken for a

heartbeat to reach node X since node Y ’s recovery is the

theoretical latency in detecting a recovery event and is

found to be ðdðk� 2Þðn� 1Þ + nþ k� 4Þ �send init + ðnþ
k� 4Þ�send max � ðk� 2Þ�. This quantity is less thanDmaxn,

hence the assumption SHTf > Dmaxn is not violated. tu
Lemma 10. The heartbeat rejection time, Treject, is 2�� + 2�

Dmaxn þ nð1þ �Þ ð�send max � �send minÞ.
Proof. Let node Y initiate a heartbeat at real time t. Node X

receives the heartbeat with delay D. Hence, node X will
timeout waiting for the next heartbeat from node Y at
time tþDþ ð1þ �Þ�þDmaxn � heartbeat:delay and will
reject any heartbeat it may receive regarding node Y

until time tþDþ ð1þ �Þ�þDmaxn � heartbeat:delayþ
ð1� �ÞTreject at the earliest. Node X could get a stale
heartbeat at time tþ Texist. We require that node X still
rejects heartbeats regarding node Y at this point in time.
Hence, we require

tþminðD� heartbeat:delayÞ þ ð1þ �Þ�þDmaxn þ ð1� �Þ
Treject > tþ Texist:

Since minðD� heartbeat:delayÞ ¼ 0, substituting for
Texist and simplifying the above inequality gives the
result stated in the lemma. tu

Lemma 11. The failed state holding time, SHTf , is Texist +
ð1þ �ÞTreject �Dmin ��send init.

Proof. The failed state holding time should be large enough
so that the first heartbeat sent after a node recovers
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reaches other nodes after they have timed out, declared
the node to be faulty and the Treject timer has expired. In
the worst-case, let node Y send a heartbeat at time t and
fail at time tþ�send init. Let a nonneighboring node X

timeout and diagnose node Y to be faulty at time
tþ Texist. Node X will then reject any heartbeat it may
receive from node Y for time ð1þ �ÞTreject after this.
Hence, the first heartbeat sent by node Y at time tþ
�send init þ SHTf must reach node X after this point in
time. This requirement can be expressed as

tþ�send init þ SHTf þDmin > tþ Texist þ ð1þ �ÞTreject:

Simplifying the inequality gives the result stated in the
lemma. If � is assumed to be greater than �send init þDmin

(or else the network will get flooded with heartbeats),

then SHTf will be greater than Dmaxn which was
assumed in the earlier lemmas. tu
The proof for the following theorem can be found in the

appendix.

Theorem 2. With W ¼ 0, a working state holding time of

ðdðk� 3Þðn� 1Þ þ 2nþ k� 6Þ�send init þ ðnþ k� 6Þ
�send max � ðk� 2Þ�

and a failed state holding time of Texist þ ð1þ �ÞTreject �
Dmin � �send init, Algorithm ForwardHeartbeat achieves

bounded correctness with a diagnostic latency of Texist �
�send init and a start-up time of ð1þ 2�ÞTexist, if � > Dmaxn

� �send init � �send min � �send max.

If � is much greater than other parameters and n is not
too large, then the working state holding time is small, and
the failed state holding time and the diagnostic latency are
roughly �. Thus, Algorithm ForwardHeartbeat has a
diagnostic latency and state holding time of about one

round.
The analysis considered thus far assumes logical heart-

beat sequence numbers. In practice, due to the finite length
of the field used to store the heartbeat sequence number, the
maximum number that can be stored in the field (denoted
by MAX SEQ NUM) will be reached and wrap around

must occur. The following lemma defines a lower bound for
MAX SEQ NUM, which guarantees that the algorithm
will not mistake a fresh heartbeat for a stale one even when
sequence numbers wrap around.

Lemma 12. The maximum sequence number, MAX

SEQ NUM, beyond which the sequence number wraps

around to zero, must be at least 2p, where p ¼ bTexist�Dmin

ð1��Þ� c,
for Theorem 2 to hold.

Proof. Let node Y send a heartbeat with sequence number n
at real time t. Another node X will timeout at time tþ
Texist at the latest. The maximum number of heartbeats X
can receive in this time is p ¼ bTexist�Dmin

ð1��Þ� c. Hence, if the
sequence number of the last heartbeat received by node
X is n, then heartbeats with sequence numbers n� p to n

should be considered as stale heartbeats, and the
sequence numbers of new heartbeats subsequently
received can only be between nþ 1 and nþ p. Hence,

MAX SEQ NUM is at least ðp� 1Þ þ 1þ p, which
reduces to the expression stated in the lemma. tu

6 SIMULATION RESULTS

Algorithm ForwardHeartbeat was simulated on randomly

generated networks. �send init, �send min, �send max, and �

were kept fixed at 0:002, 0:008, 0:08, and 60 seconds,

respectively, for all simulations. Simulations were per-

formed on networks of sizes 32, 64, 128, and 256.

Simulations were done using discrete event simulation

techniques. The dynamic nature of the system was modeled

using a Poisson process. When an event occurs on a node,

the time at which the next event occurs on the same node is

the state holding time for the current state plus an

additional time as given by the Poisson process. If a failure

event is not possible to occur because the number of failed

nodes is greater than k� 1, then the failure event is

rescheduled to a later time again according to a Poisson

process. Two values for the Poisson mean were used,

1 second and 200 seconds. In all simulations, the minimum

state holding times for both failed and working states were

set to the failed state holding time, SHTf .

Graphswere randomlygenerated for agivennandk. Since

every node must have at least k neighbors, links were

randomly introduced such that every node has k neighbors.

The connectivity of this network is then found by running the

Ford-Fulkerson algorithm [10]. If the connectivity of the

network is less than k, then n links are randomly introduced

into the network. This process is continued until the resulting

connectivity of the network is at least k. All graphs generated

this way had a connectivity exactly equal to k.

Simulations were also carried out for two different

values of k (3 and log2 n). To investigate the suitability of

the random networks, five different networks were gener-

ated for every value of ðn; kÞ. The 95 percent confidence

intervals for the average failure and recovery latencies

calculated over the five random networks were found to be

less than 10 percent of their respective means. Hence, we

take the mean of the desired quantity yielded by the five

random networks generated for a given n and k and

consider it to be representative of arbitrary networks.

6.1 Effect of the Poisson Mean

Fig. 5a shows the latency in detecting failure events versus
n and with k ¼ 3. The Poisson mean affects the dynamic
nature of the system. Two values for the Poisson mean were
considered �1 second and 200 seconds. The theoretical
latency is independent of the Poisson mean. Hence only a
single curve for both values of the Poisson mean is shown in
the figure.

For most values of n, a more dynamic fault model yields
a noticeably larger latency in detecting a failure event. As
seen in the theoretical analysis, the latency in detecting a
failure event is variable due to the difference in the actual
propagation time of the last heartbeat and the delay tracked
by the intermediate nodes. Hence, the more links that are
traversed by the last heartbeat that is sent by a node before
it could fail, the more varied the latency will be. In a more
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dynamic fault model, it can be expected that a heartbeat
takes a longer time to propagate than in networks that have
a relatively less dynamic fault model. Hence, the more
dynamic fault model (Poisson mean ¼ 1 second) yields a
larger latency.

Fig. 5b shows the latency in detecting recovery events
versus n. The theoretical latency is independent of the
Poisson mean. The sequence of events considered to derive
the theoretical latency yields a direct relationship with n.
The observed latency shows a relatively marginal increase
with increasing n. This is because, in practice, a heartbeat is
sent throughout the network through multiple paths. The
consequent delay does not change appreciably with in-
creasing n.

The Poisson mean seems to hardly affect the measured
worst-case and average latencies in detecting recovery
events. The theoretical latency for n ¼ 256 is not shown in
the graph because including it would scale down the y-axis
such that the measured maximum and average latency
curves get blurred out.

6.2 Effect of Connectivity (k)

Simulations were performed for k ¼ 3 and k ¼ log2 n, with
the Poissonmean¼ 200 seconds. Higher connectivity should
imply quicker propagation of heartbeats.However, in Fig. 6a,
the latency becomes larger with higher connectivity. This is
because the timeout period is dependent on the theoretically
derived value of Dmaxn which increases appreciably with a
small increase in k. This more than offsets quicker propaga-
tion of heartbeats.

Fig. 6b shows the variation of the measured maximum
and average latencies in detecting recovery events for
different connectivities. The recovery latency is higher
when k is lower, contradicting the theoretically expected
result. With a higher k there are more links, thereby
speeding propagation of heartbeats. The theory considers a
specific sequence of events that yield latencies that increase
with k. In practice, the occurrence of this particular
sequence of events is very unlikely.

Fig. 7 shows that the number of messages per link per
hearbeat period is slightly less than n for the two different
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connectivity values when the Poisson mean is 200 seconds.
While this can be high for very large n, it is a reasonable cost
for moderate n and typical heartbeat periods, particularly
since the message length is 10 bytes or less in this case.

7 DISCUSSION

The notion of bounded correctness strengthens the proper-
ties of distributed diagnosis in the presence of dynamic
failures and repairs compared to existing algorithms.
Bounded correctness allows arbitrary failures and/or
repairs to happen as long as two consecutive state changes
on a single node are not too close together in time. All nodes
can change state at the same time or a cascade of status
changes can occur, while maintaining a notion of correct-
ness at all times. Algorithms HeartbeatComplete and
ForwardHeartbeat were shown to handle these behaviors
effectively in completely-connected and not-completely-
connected networks, respectively. These behaviors are not
proven to be handled correctly in any other distributed
diagnosis algorithm.

Existing algorithms, particularly for not-completely-
connected networks, strive to minimize the number of tests
performed and hence have a difficult time handling
dynamic failures. Algorithm ForwardHeartbeat propagates
status information as quickly and through as many
redundant paths as possible to allow it to effectively handle
dynamic situations. The message complexity of Forward-
Heartbeat is Oðn � eÞ per hearbeat period for an n-node,
e-link network. An interesting open question is whether
algorithms with lower message cost can be developed that
either have the same latency and state holding time as
ForwardHeartbeat or allow trade offs between message cost
and these quantities to be exploited.

APPENDIX

PROOF FOR THEOREM 1

PART 1: BOUNDED DIAGNOSTIC LATENCY

Case 1a: Fault Event. Consider the event that a node Y fails at
time t and another node X is working continuously during

the interval ðt; tþ LÞ, where L is the diagnostic latency
specified in the theorem. Itmust be shown thatX learns about
Y ’s failure and does so by time tþ L. The worst-case is if
nodeY fails immediately after sendingaheartbeat toX, i.e., at
time t ¼ t0 þ�send init, where t0 is the time of initiation of the
heartbeat. This heartbeat arrives at X at time tþ�send max at
the latest. At this time, nodeX sets its receive heartbeat timer
for node Y to expire after time ð1þ �Þ�heartbeat.

Now, with the state holding time specified in the theorem,
node Y returns to the working state later than tþ ð1þ 3�Þ� +
2ð1þ �Þð�send max ��send minÞ ��send init � ð1� �ÞW . Node
Y will then initiate its next heartbeat no earlier than time ð1�
�ÞW after this. Thus, a second heartbeat from node Y to node
XmustarriveatX later than tþ ð1þ 3�Þ�+2ð1þ �Þð�send max

� �send minÞ+�send min. Thedifference inarrival timesof these
two heartbeats is therefore greater than ð1þ 3�Þ� + ð1þ
2�Þð�send max � �send minÞ = ð1þ 2�Þ�heartbeat. Hence, by the
time the second heartbeat arrives at nodeX, the receive timer
for node Y on nodeX will have already expired and nodeX
will have beenmarked as failed. Hence, the event is detected.

The diagnostic latency in this case is ð1þ 2�Þ�heartbeat +
�send max = ð1þ 3�Þ� + 2ð1þ �Þ�send max � ð1þ 2�Þ�send min,
and the latency bound is satisfied.

Case 1b: Recovery Event. Consider an arbitrary node Y
recovering from a failure (transitioning to the working
state) at time t. It must be shown that an arbitrary node X
receives a heartbeat from node Y by time tþ L, where L is
as specified in the theorem.

With a recoverywait time ofW and a state holding time at
least ð1þ �ÞW þ�send init, node Y will initiate a heartbeat to
all of its neighbors (including node X). This heartbeat will
then be received by node X by time tþ ð1þ �ÞW þ
�send init þ�send max. This corresponds to a latency of ð1þ
�ÞW + �send init þ�send max, which satisfies the theorem
condition.

Since both types of events (failure and repair) are
detected by working nodes within the latency range
specified in the theorem, bounded diagnostic latency is
achieved.

PART 2: BOUNDED START-UP

Consider an arbitrary node X that enters the working state
at time t. It must be shown that, at time tþ S for S equal to
the start-up time specified in the theorem, node X has
calculated an L-valid state for each other node. Note that
S ¼ L in the theorem.

Consider an arbitrary node Y for which node X holds a
particular state at time tþ S. There are two possible ways
that the start-up condition could be violated with respect to
node Y . Either node X holds a state of working for node Y
but Y was in the failed state during the entire interval
½t; tþ S�, or node X holds a state of failed for node Y but Y
was in the working state during the entire interval ½t; tþ S�.
We now show that neither of these possibilities can occur
with Algorithm HeartbeatComplete.

Possibility 2a:X holds working for Y but Y was failed for entire
interval. NodeX can hold a state ofworking for nodeY only if
it received a heartbeat from Y during the interval ½t; tþ S�.
Since Y was failed during this entire interval, the only
possibility is that Y sent a heartbeat before time t and then
failed, while node X received Y ’s heartbeat after time t and
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did not time out prior to time tþ S. The latest that a heartbeat
could be received by nodeX if node Y was failed at time t is if
Y sent a heartbeat at time t��send init and then failed
immediately. This heartbeat would be received by X at time
t��send init þ�send max at the latest. At this time,Xwould set
a timer to expire time ð1þ �Þ�heartbeat later. This timer will
expire at the latest by real time tþ�send max � �send init +
ð1þ 2�Þ�heartbeat. Since this expression is smaller than t plus
the first term in the start-up timegiven in the theorem,nodeX
must time out prior to time tþ S and this possibility cannot
occur.

Possibility 2b:X holds failed for Y but Y was working for entire
interval. The shortest time interval between heartbeat intia-
tion and a subsequent timeout is �send init þ�send min þ
�heartbeat. Consider the time interval ðtþ S � ð�send init þ
�send max þ ð1þ �Þ�Þ; tþ S � ð�send init +�send minÞ�. Since the
length of this interval is at least � time units, if node Y is
continuouslyworking during this interval it must have a sent
a heartbeat in this interval. The earliest time node X can
timeout after receiving a heartbeat sent in this time interval is
after tþ S. Hence, it is not possible to hold a status of failed
for a node at time tþ S for a node that has been working
continuously in the interval ½tþ S � ð�send init�send max þ
ð1þ �Þ�Þ; tþ S�.

If Y was continuously working in the interval ½t; tþ S� but
not in the interval ðtþ S � ð�send init + �send max + ð1þ �Þ �Þ,
tþ S�, then Y must have recovered in the time interval
ðtþ S � ð�send init þ�send max þ ð1þ �Þ�Þ; t�. Since S � ð1þ
�ÞW +�send init +�send max, nodeXwill definitely receive the
heartbeat sent by Y upon its recovery before time tþ S. The
earliest timeX can timeout after receiving this first heartbeat
is after tþ S � ð�send init þ�send max þ ð1þ �Þ�Þ þ�send init þ
�send min þ�heartbeat which is greater than tþ S.

Hence, if node Y is in the working state continuously in
the interval ½t; tþ S�, then node X cannot hold a status of
failed for node Y at time tþ S.

PART 3: ACCURACY

We show that, for any state transition recorded for node Y
by a working node X, if the original state is valid, then the
transition preserves accuracy and results in a valid next
state. Since, from Part 2, the initial states held by a working
node for every other node are valid at its start-up time after
recovery, accuracy holds.

According to Algorithm HeartbeatComplete, a working
node X changes the state of another node Y from failed to
working only when it receives a heartbeat from Y and the
current recorded state for Y is failed. Let the receive time of
such a heartbeat message be denoted by t. If the current
recorded state is a valid one, then Y was actually in the failed
state at time t� L or later. Now, receipt of the message
implies that Y sent a heartbeat at some time in the interval
ðt��send max; t��send minÞ and was therefore working at
that time. Therefore, Y must have experienced an event
(transitioned fromthe failed state to theworking state)during
the interval ðt��send max �W; t��send min �WÞ. Thus, the
transition recorded byX does correspond to an actual event.

Now, consider if X changes the state of Y from working
to failed. It can do this only if its receive heartbeat timer for
Y expires. If the initial state for Y was valid and, therefore,
Y was actually working at time t� L or later, then by

Lemma 1, Y must have failed prior to sending its next
heartbeat. Thus, the transition corresponds to an actual
event.

Multiple detections of the same event could only
possibly occur if a stale heartbeat could be received after
a node is timed out. However, since heartbeats are not
relayed from node to node, and they are received and
discarded within time �send init þ�send max of being sent, no
stale heartbeats can exist in the system. tu
PROOF FOR THEOREM 2

We restrict ourselves to the realistic case of � > Dmaxn

� �send init � �send min � �send max. For smaller values of �,
see [25].

PART 1: BOUNDED DIAGNOSTIC LATENCY

Case 1a: Fault Event. We need to prove that, if node Y fails at
time t, then another node X that is continuously in the
working state since time t diagnoses the fault event by time
tþ L.AssumeY initiated its last heartbeat at time t� t0 before
it could fail at time t. Then,Xwill timeout at time t� t0 þ Texist

at the latest (see Lemma 8). We require that the heartbeat Y
sends after it recovers from the fault event reachesX afterX
has timed out waiting for the next heartbeat from Y . This
translates to proving that tþ SHTf þDmin > t� t0 þ Texist.
Simplifying and substituting for the various quantities shows
that the inequality is true. The latency in detecting the failure
event is Texist ��send init.

Case 1b: Recovery Event. We need to show that, if node Y
recovers at time t, then another node X that is in the
working state continuously since time t detects the recovery
event by time tþ L. A recovery event will be detected if the
working state holding time, SHTw, is large enough so that
all nodes in the working state since the occurrence of the
recovery event receive the heartbeat sent after the node
recovered. From Lemma 9, we have that SHTw satisfies this
condition.

Next, we require that node X that has diagnosed node Y
to be faulty does not reject any heartbeat it receives from
node Y after node Y has recovered. In the Proof for
Lemma 10, it is precisely this situation that is avoided in
deriving the value of Treject.

Hence, a recovery event is always detected. The latency

in detecting a recovery event is smaller than the latency in

detecting a failure event, thus satisfying the latency bound

mentioned in the theorem.

PART 2: BOUNDED START-UP

Consider an arbitrary node X recovering at time t. By time

tþ S, it diagnoses every node in the system. We need to

prove that the state diagnosed at time tþ S for an arbitrary

node Y is L-valid. For algorithm ForwardHeartbeat, we

have S equal to ð1þ 2�ÞTexist.

Case 2a: Status of working held at time tþ S. We need to

investigate if it is possible thatnodeY was in the failed state in

the entire interval ½tþ S � L; tþ S�. Since S ¼ ð1þ 2�ÞTexist,

anyheartbeat initiatedbynodeY before time twill not exist in

the network at time tþ S. The shortest time interval between

heartbeat initiationandheartbeat timeout isminðDþ ð1þ �Þ�
+Dmaxn �Heartbeat:delayÞ. Withmin ðD�Heartbeat:delayÞ
= 0, this becomes ð1þ �Þ�þDmaxn. Hence, if a status of
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working is held by nodeX for node Y at time tþ S, then node

Y must have issued a heartbeat in the interval ½tþ S � ðð1þ
�Þ� + DmaxnÞ, tþ S �Dmin�. Since ð1þ �Þ�þDmaxn � L, the

working statedetectedby theendof the startup time isLvalid.

Case 2b: Status of failed held at time tþ S. From Case 2a, if

node Y were to be in the working state during the entire

interval ½tþ S � ð1þ �Þ��Dmaxn; tþ S �Dmin�, then node

X will definitely hold a status of working for node Y at time

tþ S. Therefore, if a status of failed is held at time tþ S,

then node Y must have been in the failed state sometime in

the said interval. Again, since ð1þ �Þ�þDmaxn � L, L

validity is maintained.

PART 3: ACCURACY

Let nodeX hold an L valid status of working for node Y and

detect a failure event at time t. SinceSHTw þ SHTf > L, there

can be amaximum of only one failure event in a time interval

of lengthL timeunits. IfY is continuously in theworking state

and, hence, sends newheartbeats at its scheduled intervals of

� time units, then from Lemma 7, we have the timeout value

set such thatXwill not timeoutwaiting for the next heartbeat

from Y , thus avoiding a false detection of a failure event.

Hence, a failure event that is detected corresponds to an

actual failure event that occurred on Y in the time interval

½t� L; t� and does not correspond to any other failure event

that had occurred on Y . The resulting failed state detected is

again L valid.
Next, let node X hold an L valid status of failed for

node Y at time t. X detects a recovery event on Y by the
arrival of a heartbeat at time t. From Lemma 10, X rejects
any heartbeat it may receive from Y for sufficient time such
that no more heartbeats from the failed node Y can be
received after the Treject phase. Hence, this heartbeat must
have been sent by Y in the interval ½t�Dmaxn; t�Dmin�.
Since the initial view of failed is L valid, a recovery event
indeed occurred on Y . Since SHTw þ SHTf > L, a max-
imum of one recovery event can occur in a period of length
L time units. Hence, the detected recovery event corre-
sponds to this particular recovery event that occurred on Y
in the interval ½t� L; t� and not to any other recovery event
that might have occurred earlier on Y . The resulting
working state detected is again L valid. tu
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