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Abstract—This paper studies the simultaneous localization and
mapping (SLAM) algorithm based on the extended Kalman filter
(EKF-SLAM) to achieve the navigation positioning of underwater
gliders in the three-dimensional space, as well as to estimate the
position of acoustic beacons which are used to measure distances
as gliders move. The model of SLAM system consists of two parts:
one part is the glider model, calculating the three-dimensional
kinematic characteristics of the glider, expanding with the current
velocity, and the other part is the beacon model, in order to
reckon the planar coordinates of three acoustic beacons without
a prior known positions. Based on measurements of distances
between the glider and beacons, the position of glider and beacons
can be estimated synchronously, utilizing the EKF method. Since
the glider runs more than one cycle, the estimation of states in
EKF-SLAM system can be optimized, combining with measured
location of the glider at the sea surface gained by the global
positioning system (GPS). The simulation results indicate that
the EKF-SLAM algorithm for glider positioning is correct and
effective, which also has high location accuracy.

I. INTRODUCTION

Underwater gliders [1–3] are a new type of underwater
robots which combines buoy technique with Autonomous
Underwater Vehicles (AUVs), and completes positioning, data
transmission and order reception at the sea surface using the
global positioning system (GPS). While gliding through water
columns, gliders measure depth and angles through the depth
meter and electronic compass, but there is no way to gain the
horizontal coordinates of gliders directly, which can impact the
effective application of glider measurements. For instance, as
mobile platform, gliders can carry sensors to do surveying and
mapping, such as two-dimensional distribution of temperature
and salinity field [4] or sound intensity field [5, 6] varying with
depth-time or depth-distance dimensions, but it is difficult to
get three-dimensional distribution of observations with high
accuracy. The key to the question is the navigation positioning
of underwater gliders in 3D space.

Several research results have been reported on underwater
glider localization. In [7], by processing the experimental
data of the PhilSea10 Experiment, the estimating uncertainty
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in subsurface glider position using transmissions from fixed
acoustic sources is acquired to localize the glider, and the
algorithm adopted is the least square method (LSM) which
is unable to combine the glider moving properties into the
localization issue. In order to reduce the error of position
estimation, the estimation of glider speed is incorporated into
the procedure [8], but there is still an indispensable assump-
tion, that is, the glider remains stationary when the glider
receives acoustic signals emitted from sources, while in reality,
gliders move continuously in the underwater environment.
According to the actual situation, utilizing the method of the
extended Kalman filter (EKF), the estimation of glider position
can be achieved based on the distances ranging from seabed
acoustic beacons to the glider [9, 10]. Whether the LSM or the
EKF method used in the glider positioning in the references
mentioned above, there is a common premise, that is, the
location of acoustic sources or beacons need to be known
a priori, which may not be feasible in real life situation. In
this paper, the technology of simultaneous localization and
mapping (SLAM) is introduced, regarding acoustic beacons as
environment characteristics, to estimate the position of glider
and beacons synchronously without a prior known positions
of beacons.

Although the SLAM algorithm based on the EKF method
(EKF-SLAM) has been widely applied to AUVs navigation
positioning [11–16], gliders are quite different from con-
ventional AUVs. The glider [3, 17] has neither cameras or
imaging sonar which can identify environmental information,
nor an inertial navigation system (INS) which can realize
the simultaneous localization of the glider and environment
characteristics. Thus, the mechanism for the glider localization
differs from AUV positioning, even though both utilize the
EKF-SLAM algorithm.

This paper establishes a system model for the glider
navigation positioning in the three-dimensional space, corrects
the position of acoustic beacons using measured location
data of the glider at the sea surface gained by GPS, and
estimates the position of glider and beacons synchronously,
utilizing measurements of the EKF-SLAM based system. The
simulation results indicate that the EKF-SLAM algorithm on
gliders navigation positioning is correct and effective, which
also has high positional accuracy.
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II. POSITIONING SYSTEM STATEMENT

In the practical application of underwater gliders, the
principle ways in gliders localization are using GPS at the
sea surface, and reckoning the subsurface positions. However,
the positioning results under the water are roughly estimated
with low accuracy, which may have a significant impact on
mapping the distribution of glider measurements in 3D space.
Therefore, it is necessary to locate gliders through some more
precise method. Different from the methods applied in [7–
11], we establish a system with two important parts, the glider
and three acoustic beacons. The glider used in this system is
equipped with a self-contained hydrophone, which can receive
acoustic signals emitted by the acoustic beacons and keep
a record. The acoustic beacons, which do not have a prior
known positions, are put on the seabed with a certain spatial
distribution and emit acoustic signals.

There are three measurements in the positioning system,
the distance from the glider to acoustic beacons, the depth of
the glider and the heading angle of the glider, in which the
ranging component is acquired by means of multiplying trans-
mission time of emission signals by the water sound velocity.
Since the glider moves without a break in the underwater
environment, distance component of the system measurements
should be issued in a round-robin fashion, which means only
one ranging result corresponding to a certain acoustic beacon is
acquired at a discrete point in time, and the distance measured
from each beacon is updated every cycle. Notice that, if the
glider is at the sea surface, measured positions of the glider
gained by GPS should be added to the system measurements,
which is vital to the localization of the acoustic beacons.
Through modeling the proposed positioning system, we will
describe the system model in the next section.

III. EKF-SLAM BASED POSITIONING SYSTEM

MODELING

On the basis of the positioning system mentioned above, we
construct system model, which obviously contains two parts,
the glider model and the beacon model. Using the system
model, we can roughly estimate the positions of the glider and
acoustic beacons. Combining with measurements of the system
which is specifically described in the above section, the poorly
estimated results can be corrected constantly. Thus, we can
estimate the locations of the glider and beacons simutaneously.
This is the mechanism of the SLAM based positioning system
in this paper.

Taking into account the consecutive motion of the glider
under the water, we use EKF to estimate the state of the
system, namely the EKF-SLAM algorithm. This algorithm has
the ability to process the range measurements individually, as
they become available, and to estimate the position of the
glider and beacons synchronously.

A. Positioning System Modeling

As mentioned above, due to three acoustic beacons without
a prior known locations, we need to establish both the glider
model and the beacon model. Finally, we combine the two
models to construct the model of the whole SLAM based
positioning system.

1) Glider model: Since the glider is not equipped with
velocity sensors, such as DVL (Doppler Velocity Log) and
ADCP (Acoustic Doppler Current Profiler), the velocity of the
glider or the current velocity cannot be measured directly. On
account of this limitation, expanding the glider model with
current velocity, both the flow-relative velocity of the glider
and the current velocity are assumed to be constants, and the
current is assumed as layered horizontal flow. The state vector
of the glider can be represented by

xg = (xE , yN , d, ϕ, va, vx, vy)
T

satisfying the following kinematical equation⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ẋE(t)
ẏN (t)

ḋ(t)
ϕ̇(t)
v̇a(t)
v̇x(t)
v̇y(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

va cosσ(t) sinϕ(t) + vx
va cosσ(t) cosϕ(t) + vy

va sinσ(t)
r(t)
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

where (xE , yN , d)T are the spatial position coordinates of the
glider, in which xE and yN are the East and North components
in the planar coordinate system and d is the depth component,
ϕ(t) is the heading angle of the glider with respect to North,
va is the flow-relative velocity of the glider, vx and vy are the
East and North components of the current velocity vector, and
[r(t), σ(t)] is the input control, in which r(t) is the turn rate
of the glider and σ(t) is the gliding angle. In this model, the
velocities va, vx, vy are treated as states without active control.
Although the flow is actually intricate time-varying and space-
varying, we reduce the complexity of the model in order to
study on the nature of the glider positioning problem, which
means we consider that va is a constant, and vx and vy are
constants only related to the depth. In our future work, we will
add the varying flow to the model.

For the estimation of the model state, if only we provide
this glider model with a set of random initial states and the
input control, the glider model can reckon the system states at
any future time. Nevertheless, the accuracy of the estimated
results can be very low if the given initial states greatly
deviated from the real values. Therefore, it is necessary to
correct the roughly estimated results through measurements.

2) Beacon model: On the seabed, three acoustic beacons
can be installed with a certain spatial distribution, and the
depth of each beacon is assumed to be known and equal to bz ,
without a prior knowledge of the plane coordinates. Since the
number of acoustic beacons is known, the state vector of the
beacons can be written as

xb = (b1, b2, b3)
T

We presume that the acoustic beacons keep still during the
experiment or simulation, satisfying the equation,⎡

⎣ ḃ1(t)

ḃ2(t)

ḃ3(t)

⎤
⎦ =

[
0
0
0

]
(2)

where each position component, bi = (bi,x, bi,y)
T , (i =

1, 2, 3), is the planar position coordinates of each acoustic bea-
con, in which bi,x and bi,y are the East and North components,
respectively.
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In this model, the planar position coordinates of acoustic
beacons at any time are equal to the initial values which are
rarely the real case, meaning that there is no way to correct
the planar locations of beacons only by means of this beacon
model. We need to use measurements in a real-world situation
to revise the model output.

3) SLAM based system modeling: Considering that the
distance between the glider and acoustic beacons is one of
the measurements, and the measured location of the glider at
the sea surface gained by GPS is crucial to the positioning
of acoustic beacons, we combine the glider model and the
beacon model to compose the whole positioning system model,
which can be called the SLAM system, meaning that the
positions of the glider and acoustic beacons can be estimated
synchronously.

The state vector of SLAM system is composed of the glider
state and beacons state,

x = (xg, xb)
T

Synthesizing the model 1 and 2, the state equation of the
SLAM system is

ẋ(t) = f(x(t), r(t), σ(t)) + w(t) (3)

where w(t) is the process noise. Based on the system model,
we can roughly estimate the system state, which is prepared
for state estimation combining with system measurements.

At discrete points in time, t = tk, (k = 1, 2, 3, . . . ), the

system measurements, ỹk = (R̃k, d̃k, ϕ̃k)
T , are available as

defined by the measuring equation,

ỹk = h(xk) + vk (4)

where vk is the measurement noise, and h(xk) is the measured
output of the system corresponding to the true value of the state
vector, including three components, namely the range of the
glider from one acoustic beacon Rk, the glider depth dk, and
the heading angle ϕk, in which the range component is defined
as

Rk =
(
(xE(tk)− bi,x(tk))

2 + (yN (tk)− bi,y(tk))
2

+ (d(tk)− bz)
2
) 1

2
(5)

It needs to be emphasized that when the glider is at the sea
surface, the location of the glider measured by GPS should
be added to system measurements. Here we assume that the
glider keeps moving from the surface to the subsurface water,
which is rarely the case in practice, but this processing can
simplify the positioning system with trivial influence on system
feasibility. From the above mentioned, system measurements
at the surface consist of three components, (x̃E , ỹN , 0)T , or

six components, (R̃k, d̃k, ϕ̃k, x̃E , ỹN )T .

Since the state estimated from system model and the system
measurements are known, the last question is utilizing the two
parts to obtain the optimal results of estimated states. This
paper uses EKF, the dynamic filter, to achieve the estimation
of the SLAM system.

B. EKF-SLAM for Underwater Glider Positioning

Since EKF operates recursively on noisy input data to
produce a statistically optimal estimate of the system state [18],
the SLAM system is based on EKF to estimate the positions
of the underwater glider and other states.

Firstly, both the process noise and the measurement noise
are assumed to be zero-mean, Gaussian and white, namely
w(t) ∼ N(0, Q(t)) and vk ∼ N(0, Rk).

Secondly, according to the dynamic characteristics of the
glider, the system state is estimated by (3) when no mea-
surements can be acquired, while at discrete points in time,
t = tk, (k = 1, 2, 3, . . . ), the state can be updated by

x̂+
k = x̂−

k +Kk

(
ỹk − h

(
x̂−
k

))
(6)

where x̂−
k is the state estimated by (3), Kk is the gain matrix,

and x̂+
k is the the preliminary optimization estimation of the

system state with a minimum mean-square error.

Finally, because a self-contained hydrophone is installed on
the glider and the full data set is available for post-processing,
it is feasible to use the RTS (Rauch-Tung-Striebel) smoothing
method [19–21] which integrates the system dynamics in
reverse time with a correction term defined as the differ-
ence between the preliminary state estimate, x̂f (t), and the
smoothed state estimate, x̂(t). The smoothed state estimates
can be obtained by integration in reverse time

d

dτ
x̂(t) = −[F (x̂f (t)) +K(t)][x̂(t)− x̂f (t)]

− f(x̂f (t), r(t), σ(t)), x̂(T ) = x̂f (T )
(7)

where T is the entire time interval, τ = T − t is the reverse
time, K(t) is the RTS smoother gain, and F (x̂f (t)) is defined
as

F (x̂f (t)) ≡ ∂f(x̂f (t), r(t), σ(t))

∂x

⏐⏐⏐⏐
x̂f (t)

(8)

Based on the principle of the RTS smoother, using measure-
ments of all future and past times, it indicates that the RTS
smoothing method can improve the estimation accuracy of the
positioning system state.

IV. SIMULATION ANALYSIS

The positioning system described by (3) and (4) was simu-
lated on a computer. Fig. 1 shows the simulation environment:
the depth of the water was one hundred meters, the current
was assumed as the time-invariant layered horizontal flow, and
there were three acoustic beacons on the seabed, constituting
an equilateral triangle with 1732 meters of the side length. The
schematic diagram of the current direction and the boundary
depth of each layer is included in Fig. 1, also the positions of
acoustic beacons which are labeled with red dot.

The true values of state variables were given as follows: the
first four components of the state vector, the positions of the
glider and the heading angle, were real-time varying, and at
the initial time, the glider location was set as the origin of co-
ordinates, and the heading angle, ϕ|t=0, was set as −10◦; other
components of the state vector were all constant values, and the
concrete contents were that va was 0.5m/s, values of (vx, vy)
was layered in the vertical direction, namely (−0.26,−0.15)
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Fig. 1. The simulation environment. Vector shapes indicate the current
direction of each layer, and the values of z axis represent the boundary depth
of each layer. Three red points are the acoustic beacons.

Fig. 2. The schematic diagram of access to measurements. Acquire a
measurement every 8 seconds, and update the distance measured from each
acoustic beacons every 24 seconds.

on the first floor, (−0.25, 0) on the second floor, (0.17,−0.1)
on the third floor, and (0,−0.2) on the fourth floor, and the
planar coordinates of three acoustic beacons, (bi,x, bi,y)(m),
were (0, 1000), (−866,−500), (866,−500). But all these real
values are not known a prior except for the system measure-
ments, we gave a set of random initial state values,

x̂0= (xE ,yN ,d,ϕ,va,vx,vy,b1,x,b1,y,b2,x,b2,y,b3,x,b3,y)
T
∣∣∣
t=0

=(0,0,0,−10◦,0.3m/s,0,0,5,1005,−870,−506,870,−455)
T

The choice of the state values, either the real values or
initial values, is not limited to the case given above. The
current vector of each layer can be set in any direction with
any reasonable magnitude, which has trivial effect on the
efficiency of the algorithm. The side length of the equilateral
triangle composed of acoustic beacons is set according to the
range of glider motion, and the influence of length variation
is unconspicuous for the positional accuracy as long as dis-
tances between the glider and three acoustic beacons are not
approximately equal to each other most of the time.

The simulation experiment was set as follows. Simulation
time was 103 minutes, corresponding to six cycles of the glider
motion. The glider obtained measurements from the initial
time to the end time with the time interval of eight seconds,
and once the glider arrived at the sea surface, the measured
location of the glider was acquired by GPS. The ranging results
were gained in a round-robin fashion, as shown in Fig. 2,
which meant the distance measured from each beacons was
updated every 24 seconds. In the process of simulation, the
measurements were obtained from the true model output with
the addition of normally distributed measurement noise. Each
element in the covariance matrix of the process noise and the
measurement noise was 2.5×10−5. Formally justified in [22],
the weight value of the two covariance matrixes represents
different degrees of confidence between the system model and
the measurements.

The input control of the system is [r(t), σ(t)]. The turn
rate, r(t), controls the motion model of the glider: if r(t)

(a) (b)

(c) (d)

Fig. 3. The moving trajectory of different glider motion model, the linear
sawtooth motion in (a) and (c), and the spiraling motion in (b) and (d),
corresponding to r = 0.5◦/s. The horizontal projections of two moving
trajectory are show in (a)-(b), and (c)-(d) show the three-dimensional positions
of the glider under the two movement patterns.

equals to zero, the glider conducts the linear sawtooth motion
which is shown in Fig. 3(c), and if not, the glider conducts the
spiraling motion, which can be seen in Fig. 3(d) corresponding
to r = 0.5◦/s. The gliding angle, σ(t), represents the nose-
down or nose-up motion, and is positive nose-down, in which
case the absolute value is equal to that of the nose-up one:
|σ| = 23◦. Because of the influence of flow, neither the
horizontal projection of the sawtooth motion, Fig. 3(a), nor
that of the turning motion, Fig. 3(b), is the same as the
pattern in still water, which shall be a straight line or a circle.
Through the simulation, we found that either the sawtooth or
the spiraling motion had the same phenomenon, hence we took
the sawtooth motion for example, and analyzed the results
specifically.

In order to evaluate the accuracy of state estimates, we need
to compare the estimated results with true values. Fig. 4(a)
shows the estimation errors of the glider three-dimensional
coordinates, (xE − x̂E), (yN − ŷN ) and (z − ẑ), and the
planar coordinates estimation errors of three acoustic beacons,
(bi,x − b̂i,x) and (bi,y − b̂i,y), (i = 1, 2, 3), are shown in Fig.
4(b). As can be seen from the figure, estimation errors are
relatively large during the first cycle, and, with the acquirement
of measured location of the glider at the sea surface gained by
GPS, the errors converge rapidly in proximity to zero. From
Fig. 5, the estimation results of three velocity components are
consistent with true values. From the simulation results, the
effectiveness of the proposed positioning system using EKF-
SLAM algorithm can be verified.

Estimation results obtained from the proposed EKF-SLAM
algorithm are compared with the EKF ones [9, 10], which can
further demonstrate the correctness and effectiveness of the
proposed positioning system based on EKF-SLAM algorithm.
TABLE I shows the root-mean-square error (RMSE) of the
estimations obtained by EKF-SLAM and EKF, and also the
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(a) (b)

Fig. 4. The estimation errors of the glider and acoustic beacons. Lines of
different colors in (a) represent different component of the glider location
errors, and in (b) represent the planar position errors of different acoustic
beacons. The dash lines and the solid lines in (b) denote the x-direction and
y-direction, respectively.

Fig. 5. Comparison between the estimated velocity components and the true
values, denoted by solid lines and dash lines.

TABLE I. RMSE OF RESULTS ESTIMATED BY EKF-SLAM AND EKF

RMSE Results
The System States

xE yN d ϕ va vx vy

(m) (m) (m) (rad) (m/s) (m/s) (m/s)
EKF-SLAM 1.21 0.22 0.01 0.01 0.01 0.03 0.02

EKF 10.1 6.38 0.50 0.31 0.84 1.23 1.53

PD-RMSE 88% 97% 98% 97% 99% 98% 99%

—
b1,x b1,y b2,x b2,y b3,x b3,y —
(m) (m) (m) (m) (m) (m)

EKF-SLAM 0.17 0.18 0.93 0.18 0.67 1.13 —

EKF 5 5 4 6 4 5 —

PD-RMSE 97% 96% 77% 97% 83% 77% —

percent decrease in RMSE (PD-RMSE) between the two
methods. Since the planar positions of acoustic beacons are
not included in the states of the EKF system, which regards
each beacon location as known, the position errors of acoustic
beacons are always equal to the initial errors during the entire
experiment time. As can be seen, the estimation results gained
by the EKF-SLAM method are obviously superior to the
results gained by the EKF method because the PD-RMSE
outcomes of most estimations are in proximity to one hundred
percent.

V. CONCLUSION AND FUTURE WORK

In this paper, we establish a system model utilizing the
EKF-SLAM navigation positioning algorithm to localize the
underwater glider in the condition that locations of acoustic
beacons are not known a prior. Combining with measured
locations of the glider at the sea surface gained by GPS and the
other three measurements in the system, positions of the glider
and acoustic beacons can be estimated synchronously. The
simulation results demonstrate the effectiveness of the EKF-

SLAM based navigation positioning system, and the RMSE
of the system states estimated by the EKF-SLAM and EKF
are compared with each other, which can further verify the
correctness and effectiveness of the EKF-SLAM algorithm for
underwater glider positioning in the three-dimensional space.

Since the movement of the glider includes the process of
acceleration and deceleration, and ocean currents are time-
varying, which can also affect the positions of acoustic bea-
cons, we will optimize the glider model and the beacon model
in our future work, in order to approach to the real case.
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