
Laboratory Exercise 8
Memory Blocks

In computer systems it is necessary to provide a substantial amount of memory. If a system is implemented
using FPGA technology it is possible to provide some amount of memory by using the memory resources that exist
in the FPGA device. If additional memory is needed, it has to be implemented by connecting external memory
chips to the FPGA. In this exercise we will examine the general issues involved in implementing such memory.

A diagram of the random access memory (RAM) module that we will implement is shown in Figure 1a. It
contains 32 eight-bit words (rows), which are accessed using a five-bit address port, an eight-bit data port, and a
write control input. We will consider two different ways of implementing this memory: using dedicated memory
blocks in an FPGA device, and using a separate memory chip.

The Cyclone II 2C35 FPGA that is included on the DE2 board provides dedicated memory resources called
M4K blocks. Each M4K block contains 4096 memory bits, which can be configured to implement memories of
various sizes. A common term used to specify the size of a memory is its aspect ratio, which gives the depth in
words and the width in bits (depth x width). Some aspect ratios supported by the M4K block are 4K x 1, 2K x
2, 1K x 4, and 512 x 8. We will utilize the 512 x 8 mode in this exercise, using only the first 32 words in the
memory. We should also mention that many other modes of operation are supported in an M4K block, but we will
not discuss them here.

32 x 8 RAM
Write

5
Address

8
Data

(a) RAM organization

32 x 8 RAM 8
DataOut

5
Address

8
DataIn

Write

Clock

5

8

(b) RAM implementation

Figure 1. A 32 x 8 RAM module.

There are two important features of the M4K block that have to be mentioned. First, it includes registers that can
be used to synchronize all of the input and output signals to a clock input. Second, the M4K block has separate
ports for data being written to the memory and data being read from the memory. A requirement for using the

1



M4K block is that either its input ports, output port, or both, have to be synchronized to a clock input. Given these
requirements, we will implement the modified 32 x 8 RAM module shown in Figure 1b. It includes registers for
the address, data input, and write ports, and uses a separate unregistered data output port.

Part I

Commonly used logic structures, such as adders, registers, counters and memories, can be implemented in an
FPGA chip by using LPM modules from the Quartus II Library of Parameterized Modules. Altera recommends
that a RAM module be implemented by using the altsyncram LPM. In this exercise you are to use this LPM to
implement the memory module in Figure 1b.

1. Create a new Quartus II project to implement the memory module. Select as the target chip the Cyclone II
EP2C35F672C6, which is the FPGA chip on the Altera DE2 board.

2. You can learn how the MegaWizard Plug-in Manager is used to generate a desired LPM module by reading
the tutorial Using Library Modules in Verilog Designs. This tutorial is provided in the University Program
section of Altera’s web site. In the first screen of the MegaWizard Plug-in Manager choose the altsyncram
LPM, which is found under the storage category. As indicated in Figure 2, select Verilog HDL as the type of
output file to create, and give the file the name ramlpm.v. On the next page of the Wizard specify a memory
size of 32 eight-bit words, and select M4K as the type of RAM block. Advance to the subsequent page and
accept the default settings to use a single clock for the RAM’s registers, and then advance again to the page
shown in Figure 3. On this page deselect the setting called Read output port(s) under the category Which
ports should be registered?. This setting creates a RAM module that matches the structure in Figure
1b, with registered input ports and unregistered output ports. Accept defaults for the rest of the settings in
the Wizard, and then instantiate in your top-level Verilog file the module generated in ramlpm.v. Include
appropriate input and output signals in your Verilog code for the memory ports given in Figure 1b.

Figure 2. Choosing the altsyncram LPM.

2



Figure 3. Configuring input and output ports on the altsyncram LPM.

3. Compile the circuit. Observe in the Compilation Report that the Quartus II Compiler uses 256 bits in one of
the M4K memory blocks to implement the RAM circuit.

4. Simulate the behavior of your circuit and ensure that you can read and write data in the memory.

Part II

Now, we want to realize the memory circuit in the FPGA on the DE2 board, and use toggle switches to load some
data into the created memory. We also want to display the contents of the RAM on the 7-segment displays.

1. Make a new Quartus II project which will be used to implement the desired circuit on the DE2 board.

2. Create another Verilog file that instantiates the ramlpm module and that includes the required input and
output pins on the DE2 board. Use toggle switches SW7−0 to input a byte of data into the RAM location
identified by a 5-bit address specified with toggle switches SW15−11. Use SW17 as the Write signal and use
KEY0 as the Clock input. Display the value of the Write signal on LEDG0. Show the address value on the
7-segment displays HEX7 and HEX6, show the data being input to the memory on HEX5 and HEX4, and
show the data read out of the memory on HEX1 and HEX0.

3. Test your circuit and make sure that all 32 locations can be loaded properly.

Part III

Instead of directly instantiating the LPM module, we can implement the required memory by specifying its struc-
ture in the Verilog code. In a Verilog-specified design it is possible to define the memory as a multidimensional
array. A 32 x 8 array, which has 32 words with 8 bits per word, can be declared by the statement

reg [7:0] memory array [31:0];

In the Cyclone II FPGA, such an array can be implemented either by using the flip-flops that each logic element
contains or, more efficiently, by using the M4K blocks. There are two ways of ensuring that the M4K blocks will

3



be used. One is to use an LPM module from the Library of Parameterized Modules, as we saw in Part I. The other
is to define the memory requirement by using a suitable style of Verilog code from which the Quartus II compiler
can infer that a memory block should be used. Quartus II Help shows how this may be done with examples of
Verilog code (search in the Help for “Inferred memory”).

Perform the following steps:

1. Create a new project which will be used to implement the desired circuit on the DE2 board.

2. Write a Verilog file that provides the necessary functionality, including the ability to load the RAM and read
its contents as done in Part II.

3. Assign the pins on the FPGA to connect to the switches and the 7-segment displays.

4. Compile the circuit and download it into the FPGA chip.

5. Test the functionality of your design by applying some inputs and observing the output. Describe any
differences you observe in comparison to the circuit from Part II.

Part IV

The DE2 board includes an SRAM chip, called IS61LV25616AL-10, which is a static RAM having a capacity
of 256K 16-bit words. The SRAM interface consists of an 18-bit address port, A 17−0, and a 16-bit bidirectional
data port, I/O15−0. It also has several control inputs, CE, OE, WE, UB, and LB, which are described in Table 1.

Name Purpose

CE Chip enable−asserted low during all SRAM operations

OE Output enable−can be asserted low during only read operations, or during all operations
WE Write enable−asserted low during a write operation
UB Upper byte−asserted low to read or write the upper byte of an address
LB Lower byte−asserted low to read or write the lower byte of an address

Table 1. SRAM control inputs.

The operation of the IS61LV25616AL chip is described in its data sheet, which can obtained from the DE2 System
CD that is included with the DE2 board, or by performing an Internet search. The data sheet describes a number
of modes of operation of the memory and lists many timing parameters related to its use. For the purposes of
this exercise a simple operating mode is to always assert (set to 0) the control inputs CE, OE, UB, and LB, and
then to control reading and writing of the memory by using only the WE input. Simplified timing diagrams that
correspond to this mode are given in Figure 4. Part (a) shows a read cycle, which begins when a valid address
appears on A17−0 and the WE input is not asserted. The memory places valid data on the I/O 15−0 port after the
address access delay, tAA. When the read cycle ends because of a change in the address value, the output data
remains valid for the output hold time, tOHA.

4



Data out 

Address in

tAA tOHA

(a) SRAM read cycle timing

Address in

tAW tHA

(b) SRAM write cycle timing

Data in 

tHDtSD

tSA

A17 0–

I/O17 0–

A17 0–

I/O17 0–

WE

Figure 4. SRAM read and write cycles.

Figure 4b gives the timing for a write cycle. It begins when WE is set to 0, and it ends when WE is set back to
1. The address has to be valid for the address setup time, tAW , and the data to be written has to be valid for the
data setup time, tSD, before the rising edge of WE. Table 2 lists the minimum and maximum values of all timing
parameters shown in Figure 4.

Value
Parameter Min Max

tAA − 10 ns

tOHA 3 ns −
tAW 8 ns −
tSD 6 ns −
tHA 0 −
tSA 0 −
tHD 0 −

Table 2. SRAM timing parameter values.

You are to realize the 32 x 8 memory in Figure 1a by using the SRAM chip. It is a good approach to include in
your design the registers shown in Figure 1b, by implementing these registers in the FPGA chip. Be careful to
implement properly the bidirectional data port that connects to the memory.

1. Create a new Quartus II project for your circuit. Write a Verilog file that provides the necessary functionality,
including the ability to load the memory and read its contents. Use the same switches, LEDs, and 7-segment
displays on the DE2 board as in Parts II and III, and use the SRAM pin names shown in Table 3 to interface

5



your circuit to the IS61LV25616AL chip (the SRAM pin names are also given in the DE2 User Manual).
Note that you will not use all of the address and data ports on the IS61LV25616AL chip for your 32 x 8
memory; connect the unneeded ports to 0 in your Verilog module.

SRAM port name DE2 pin name

A17−0 SRAM ADDR17−0

I/O15−0 SRAM DQ15−0

CE SRAM CE N
OE SRAM OE N
WE SRAM WE N
UB SRAM UB N
LB SRAM LB N

Table 3. DE2 pin names for the SRAM chip.

2. Compile the circuit and download it into the FPGA chip.

3. Test the functionality of your design by reading and writing values to several different memory locations.

Part V

The SRAM block in Figure 1 has a single port that provides the address for both read and write operations. For
this part you will create a different type of memory module, in which there is one port for supplying the address
for a read operation, and a separate port that gives the address for a write operation. Perform the following steps.

1. Create a new Quartus II project for your circuit. To generate the desired memory module open the MegaWiz-
ard Plug-in Manager and select again the altsyncram LPM in the storage category. On Page 1 of the Wizard
choose the setting With one read port and one write port (simple dual-port mode) in the category called
How will you be using the altsyncram?. Advance through Pages 2 to 5 and make the same choices as
in Part II. On Page 6 choose the setting I don’t care in the category Mixed Port Read-During-Write for
Single Input Clock RAM. This setting specifies that it does not matter whether the memory outputs the
new data being written, or the old data previously stored, in the case that the write and read addresses are
the same.

Page 7 of the Wizard is displayed in Figure 5. It makes use of a feature that allows the memory module
to be loaded with initial data when the circuit is programmed into the FPGA chip. As shown in the figure,
choose the setting Yes, use this file for the memory content data, and specify the filename ramlpm.mif.
To learn about the format of a memory initialization file (MIF), see the Quartus II Help. You will need to
create this file and specify some data values to be stored in the memory. Finish the Wizard and then examine
the generated memory module in the file ramlpm.v.

6



Figure 5. Specifying a memory initialization file (MIF).

2. Write a Verilog file that instantiates your dual-port memory. To see the RAM contents, add to your design a
capability to display the content of each byte (in hexadecimal format) on the 7-segment displays HEX1 and
HEX0. Scroll through the memory locations by displaying each byte for about one second. As each byte
is being displayed, show its address (in hex format) on the 7-segment displays HEX3 and HEX2. Use the
50 MHz clock, CLOCK 50, on the DE2 board, and use KEY0 as a reset input. For the write address and
corresponding data use the same switches, LEDs, and 7-segment displays as in the previous parts of this
exercise. Make sure that you properly synchronize the toggle switch inputs to the 50 MHz clock signal.

3. Test your circuit and verify that the initial contents of the memory match your ramlpm.mif file. Make sure
that you can independently write data to any address by using the toggle switches.

Part VI

The dual-port memory created in Part V allows simultaneous read and write operations to occur, because it has
two address ports. In this part of the exercise you should create a similar capability, but using a single-port RAM.
Since there will be only one address port you will need to use multiplexing to select either a read or write address
at any specific time. Perform the following steps.

1. Create a new Quartus II project for your circuit, and use the MegaWizard Plug-in Manager to again create
a single-port version of the altsyncram LPM. For Pages 1 to 6 of the Wizard use the same settings as in
Part I. On Page 7, shown in Figure 6, specify the ramlpm.mif file as you did in Part V, but also make the
setting Allow In-System Memory Content Editor to capture and update content independently of the
system clock. This option allows you to use a feature of the Quartus II CAD system called the In-System
Memory Content Editor to view and manipulate the contents of the created RAM module. When using this
tool you can optionally specify a four-character ‘Instance ID’ that serves as a name for the memory; in
Figure 7 we gave the RAM module the name 32x8. Complete the final steps in the Wizard.

7



Figure 6. Configuring altsyncram for use with the In-System Memory Content Editor.

2. Write a Verilog file that instantiates your memory module. Include in your design the ability to scroll
through the memory locations as in Part V. Use the same switches, LEDs, and 7-segment displays as you
did previously.

3. Before you can use the In-System Memory Content Editor tool, one additional setting has to be made. In
the Quartus II software select Assignments > Settings to open the window in Figure 7, and then open the
item called Default Parameters under Analysis and Synthesis Settings. As shown in the figure, type
the parameter name CYCLONEII SAFE WRITE and assign the value RESTRUCTURE. This parameter
allows the Quartus II synthesis tools to modify the single-port RAM as needed to allow reading and writing
of the memory by the In-System Memory Content Editor tool. Click OK to exit from the Settings window.

8



Figure 7. Setting the CYCLONEII SAFE WRITE parameter.

4. Compile your code and download the circuit onto the DE2 board. Test the circuit’s operation and ensure
that read and write operations work properly. Describe any differences you observe from the behavior of
the circuit in Part V.

5. Select Tools > In-System Memory Content Editor, which opens the window in Figure 8. To specify the
connection to your DE2 board click on the Setup button on the right side of the screen. In the window in
Figure 9 select the USB-Blaster hardware, and then close the Hardware Setup dialog.

Figure 8. The In-System Memory Content Editor window.

9



Figure 9. The Hardware Setup window.

Instructions for using the In-System Memory Content Editor tool can be found in the Quartus II Help.
A simple operation is to right-click on the 32x8 memory module, as indicated in Figure 10, and select
Read Data from In-System Memory. This action causes the contents of the memory to be displayed
in the bottom part of the window. You can then edit any of the displayed values by typing over them. To
actually write the new value to the RAM, right click again on the 32x8 memory module and select Write
All Modified Words to In-System Memory.

Experiment by changing some memory values and observing that the data is properly displayed both on the
7-segment displays on the DE2 board and in the In-System Memory Content Editor window.

Figure 10. Using the In-System Memory Content Editor tool.

Part VII

For this part you are to modify your circuit from Part VI (and Part IV) to use the IS61LV25616AL SRAM chip
instead of an M4K block. Create a Quartus II project for the new design, compile it, download it onto the DE2
boards, and test the circuit.

In Part VI you used a memory initialization file to specify the initial contents of the 32 x 8 RAM block, and
you used the In-System Memory Content Editor tool to read and modify this data. This approach can be used
only for the memory resources inside the FPGA chip. To perform equivalent operations using the external SRAM
chip you can use a special capability of the DE2 board called the DE2 Control Panel. Chapter 3 of the DE2 User
Manual shows how to use this tool. The procedure involves programming the FPGA with a special circuit that
communicates with the Control Panel software application, which is illustrated in Figure 11, and using this setup

10



to load data into the SRAM chip. Subsequently, you can reprogram the FPGA with your own circuit, which will
then have access to the data stored in the SRAM chip (reprogramming the FPGA has no effect on the external
memory). Experiment with this capability and ensure that the results of read and write operations to the SRAM
chip can be observed both in the your circuit and in the DE2 Control Panel software.

Figure 11. The DE2 Control Panel software.

Copyright c©2006 Altera Corporation.

11


