

Figure 13.1 The UP3-bot uses an R/C car battery and R/C servos for drive motors.

Figure 13.2 Left: Radio Control Servo Motor and Right: Servo with Case and Gears Removed.

LIBRARY IEEE: USE IEEE STD LOGIC 1164 ALL; USE IEEE.STD LOGIC ARITH.ALL; USE IEEE.STD LOGIC UNSIGNED.ALL; **ENTITY** motor control IS PORT STD_LOGIC: (clock 1kHz : IN IN STD LOGIC Imotor dir, rmotor dir Imotor_speed, rmotor_speed : IN STD_LOGIC; Imotor, rmotor : OUT STD_LOGIC); **END** motor control; **ARCHITECTURE a OF motor control IS** SIGNAL count motor: STD LOGIC VECTOR(4 DOWNTO 0); **BEGIN PROCESS BEGIN** -- Count motor is a 20ms timer WAIT UNTIL clock 1kHz'EVENT AND clock 1kHz = '1'; IF count motor /=19 THEN count motor \leq count motor + 1; ELSE count motor <= "00000"; END IF: IF count motor >= 17 AND count motor < 18 THEN -- Don't generate any pulse for speed = 0 IF Imotor speed = '0' THEN Imotor $\leq 0'$; ELSE Imotor <= '1';END IF; IF rmotor speed = '0' THEN rmotor $\leq 0'$: ELSE rmotor $\leq 1'$: END IF:

-- Generate a 1 or 2ms pulse for each motor

-- depending on direction

-- reverse directions between the two motors because

-- of servo mounting on the UP3-bot base

ELSIF count_motor >=18 AND count_motor <19 THEN

IF Imotor_speed /= '0' THEN

CASE Imotor_dir IS

-- FORWARD

WHEN '0' =>

```
Imotor <= '1';
```

-- REVERSE

WHEN '1' =>

```
Imotor \leq 0';
```

WHEN OTHERS => NULL; END CASE;

ELSE

Imotor <= '0';

END IF;

IF rmotor_speed /= '0' THEN CASE rmotor dir IS

-- FORWARD

WHEN '1' =>

```
rmotor <= '1';
```

-- REVERSE

WHEN '0' =>

rmotor <= '0';

WHEN OTHERS => NULL; END CASE;

ELSE

rmotor <= '0';

END IF;

ELSE

Imotor <= '0'; rmotor <= '0';

END IF;

END PROCESS; END a;

Figure 13.3 – Three LEDs and phototransistors are mounted on bottom of the Line Tracker board.

Figure 13.4 IR Proximity Sensor Module – Two IR LEDs on sides and one IR sensor in middle.

Figure 13.5 Proximity detector active sensor area.

Figure 13.6 Circuit layout of one LED and the receiver module on the infrared detector.

Figure 13.7 Nubotics WW-01 Wheel Watcher Incremental Encoder System.

Figure 13.8 Devantech SRF10 Ultrasonic Range Finder.

Figure 13.9 Sharp IR Ranging Module.

Figure 13.10 Operation of Sharp IR Ranging Module.

Figure 13.10 Dinsmore 1490 Digital Compass Sensor

Figure 13.11 PNI Electronic Compass Module.

Figure 13.12 Small sensor board for an aircraft autopilot system. Photograph ©2004 courtesy of Henrik Christophersen, Georgia Institute of Technology Unmanned Aerial Research Facility.

Figure 13.13 Motorola Single Chip GPS module.

Figure 13.14 Devantech TPA81 Eight Pixel Thermal Array Sensor.

Figure 13.15 The CMUCAM2 contains a color video camera on a chip and a PIC microcontroller.

Figure 13.16 UP3-bot Plexiglas Base with wheel slots and drill hole locations.

Figure 13.17 Bottom view of UP3-bot base showing battery, servos, wheels, and cabling.

Figure 13.18 Top View of UP3-bot Base with Compass, IR, and Sonar Sensor Modules.

Figure 13.19 FPGA Controlled Toy R/C Truck with IR Distance Sensors.

FwdRev	1 Bit	0 = Forward/1 = Reverse
Direction	3 Bits	First bit Left/Right, 2nd and 3rd bit is angle.
		$0-00 = Left - Straight^*$
		0-01 = Left - Slight Turn
		0-10 = Left - Medium Turn
		0-11 = Left - Full Turn
		$1-00 = \text{Right} - \text{Straight}^*$
		1-01 = Right – Slight Turn
		1-10 = Right – Medium Turn
		1-11 = Right – Full Turn
		* Note: 000 and 100 are both Straight
Speed	3 Bits	000 = Stop
		001 = Slowest Speed
		:::
		111 = Fastest Speed

Figure 13.20 Robot Control IP Core with Pulsed Speed & Steering Control.

Figure 13.21 Affect of Duty Cycle on Turning Angle and Speed.

Figure 13.22 Interfacing to the R/C Car's Internal Control Signals at the Demodulator IC.

Figure 13.23 Photo Showing Control Modifications to R/C Car Control Board.

Figure 13.24 Hobbyist R/C model with a CMU camera and R/C PWM servos controlled by an FPGA

Figure 13.25 Lynxmotion Hexpod Walking Robot Kit with 12 R/C servos.

Figure 13.26 ActiveMedia's Amigobot robot base controlled by an FPGA with a Nios Processor