Atari 2600 VCS (1977)

- ≈ 1 MHz MOS 6507
 - low-cost version of 6502
- 128 bytes RAM
- First ROM cartridges 2K, later 4K
- Discontinued 1992
- Retro releases now on the market!

Atari 2600 Hardware Tricks

- Could put RAM on the cartridge
 - "Atari Super Chip"
 - 128 more bytes!
 - Jr. Pac-Man
- "Bank switching" to put more ROM on cartridge
 - Only 4K immediately addressable - game still has to operate within individual 4K chunks at a time
 - Mr. Do!'s Castle (8K), Road Runner (16K, 1989)
 - Fatal Run (only 32K game released, 1990)

“M Network” games

- Atari 2600 games produced by Mattel
- Controversial decision within Mattel
- Done by same group that designed the Intellivision: APh Technology Consulting

Super Charger added 2K RAM

- Originally planned as a hardware add-ons
- Public didn’t seem to like add-ons, so built in separately into each cartridge
- BurgerTime: Cleverness beats hardware!
Atari 2600 - The Chess Story (1)

- “Atari never intended to create a Chess game for the Atari 2600”

- “the original VCS box had a chess piece on it, and Atari was ultimately sued by someone in Florida due to the lack of an actual chess game”

- “Some time later Atari’s engineers began working on a version of Chess for the 2600”

Quotes from AtariAge page on Video Chess

Atari 2600 - The Chess Story (2)

- “Although Video Chess ended up shipping as a 4K game, earlier versions of the game were larger...This prompted Atari to invent bank-switching ROMs which would be used in later titles that needed more than 4K...”

Quotes & pics from AtariAge page on Video Chess

Atari 2600 Graphics

- Custom “Television Interface Adapter” for handling graphics and sound
- No graphics buffer!
- “Playfield” scanline 40 blocks wide, two colors
- Atari 2600 games have intricate timing loop
 - For each scanline, program has 76 cycles to do whatever computations it needs to do to load a scanline’s worth of pixels into the TIA (“racing the beam”)
 - Have to do most the “game logic” during the vertical blanking period
- Two sprite “players”: 8-“pixel” wide chunks, twice resolution of playfield, could be two colors different than playfield
- Missiles: single-bit

Info from “Chris Crawford on Game Design”
Some details from Ian Bogost

Atari 2600 - Graphics Tricks

- Could change TIA registers to change colors
 - ...from scan line to scan line
 - ...if you were extremely careful with your timing, you could do it in the middle of a scan line!
- Multiplex a single sprite between multiple objects
 - Flickering ghosts in Pac-Man man
 - Flicker varies depending on number of ghosts in play
- Programmers learned to exploit “undocumented features” in the hardware
 - Makes the Atari 2600 one of the hardest machines to emulate accurately
Rise of the third party developers

- Atari programmers unhappy
 - No credit
 - Salaried; little if any royalties
- Four top programmers split and form Activision (1979)
 - Responsible for over half of Atari’s titles
 - Promoted game creators along with games
 - Drew top talent
 - Didn’t pay royalties to Atari
 - Nintendo learned from this!
 - Atari sued
 - Settled in 1982
- Mattel and Coleco made the same mistakes in handling their programmers that Atari did!

Intellivision vs. Atari

- Plimpton Sports
 - http://www.youtube.com/watch?v=lDza6eTXGEY
- Major League Baseball
 - http://www.youtube.com/watch?v=Y0KTjpaG3cg
- Star Strike
 - http://www.youtube.com/watch?v=VPB3H_a234s

Mattel Intellivision (1979)

- ≈1 MHz General Instrument CP1610 (16-bit!)
- 1352 bytes RAM:
 - 240x8 scratchpad memory
 - 352x16 system memory
 - 240 words for character buffer – what characters are where and what color
 - 512x8 graphics memory
 - Character patterns
- 7168 bytes ROM
 - 4096x10 (5120) executive ROM
 - 2048x8 graphics ROM

Mattel Intellivision - Graphics

- 160x196, 16 colors
- 8 sprites
 - 8x8 or 8x16
 - Stretching: horizontal (1x, 2x) or vertical (1x, 2x, 4x, 8x)
 - Mirroring: horizontal and vertical
 - Collision detection: sprite to sprite, sprite to background, sprite to screen border
 - Priority: in front of or behind background
Mattel Intellivision - Retro

Mattel Intellivision - Modern Homebrew Scene

Example Intellivision code

```assembly
CALL RSGB             ; Reset good guy bullets.
CALL FILLZERO.lp     ; \- nuke remaining bad guys
DECLE BOMPTBL         ; /
CALL FILLZERO.lp     ; \- and their sprites
DECLE 1B
DECLE SPAT

; Draw the crater strip in selected color scheme.

MVI COURSE, R1      \-
ANDI #7, R1          ; \- Adjust color for course
SLK R1, 1            ; |
ADDI #CRATCLR, R1    ; |
MOV R0, R2           ; |
ADDI #7*8, R2        ; City/crater ending card #
```

Source code for Space Patrol
From spatula-city.org/~im14u2c/intv/spteaser

Atari Homebrew Scene

From www.bogost.com and www.quernhorst.de/atari/rf.html
ColecoVision (1982)

- ≈3.6 MHz Zilog Z-80A (8-bit)
- 1KB scratch RAM
- 16 KB of separate VRAM (not directly CPU addressable)
- Cartridges 8/16/24/32K
- Expansion Module #1 allowed user to play Atari 2600 games
 - Atari sued, but lost since EM #1 used off-the-shelf hardware
- Bundled with Donkey Kong - "killer app"
- 6 million sold
- Discontinued 1984
- Coleco also produced games for Atari 2600 and Intellivision

Info from Wikipedia

http://www.youtube.com/v/5GpptJusOiM

ColecoVision - Graphics

- Video Processor: Texas Instruments TMS9928A
 - Variants used in MSX, Texas Instruments TI-99/4A
- 256x192, 15 colors
- 32 sprites (but only 4 per line)
- First console that could seriously compete with stand-alone arcade machines

Info & screenshots from Wikipedia

Smurf: Rescue in Gargamel's Castle
War Room

Apple][series (1977)

- ≈1 MHz MOS 6502
- 16K to 48K of RAM (64K with "Language Card")
- Expansion slots
- VisiCalc (first spreadsheet) - killer app
- Spurred IBM to make the IBM PC
- Hi-res graphics: 280x192, 5 colors (sort of)
 - Page flipping, Pre-shifted shapes

Exodus: Ultima III screenshot from Moby Games
Other pics and info from Wikipedia

Atari HCS 400/800 (1979)

- ≈1 MHz MOS 6502
- 16K to 48K of RAM
- Star Raiders - “killer app”
 - Created by engineer who designed POKEY (the I/O and sound chip)
 - Written to show off the machine’s capabilities
 - 3-D math!!! Remember, no divide instructions....

Pics and info from Wikipedia

Star Raiders
Atari HCS 400/800 - Graphics

- Extremely flexible graphics system
- Amenable to all kinds of 2600-style tricks, although now with a much more powerful basic capabilities
 - Reprogramming color table for each scan line
 - Vertical smooth scrolling easy
 - Smooth scrolling horizontally via custom character set patterns

Info from "Chris Crawford on Game Design"
Screenshots from Wikipedia

Atari 5200 (1982)

- Sort of a Atari 400/800 without a keyboard
- Not totally compatible
- Had trouble with new analog joysticks
 - Hard to center
- Atari paid more attention to 2600 line
- Discontinued in 1984

Photo and info from Wikipedia

Commodore 64 (1982)

- ≈1 MHz MOS 6510 (close relative of 6502)
- 64K RAM
- Discontinued 1984
 - Followed up by many variations
- Classic sound chip: SID
- Launch price: $595

Photo and info from Wikipedia

Commodore 64 - Graphics

- MOS VIC-II graphics chip
- 16 colors
- Display modes:
 - 320x200 (2 unique colors in each 8x8 pixel block)
 - 160x200 (3 unique colors + 1 common color in each 4x8 pixel block)
- 8 sprites, 24x21 pixels (12x21 in multicolor mode)
- Smooth scrolling
- Raster interrupts

Info from Wikipedia
The Video Game Crash of 1984 (1)

- Partially arose from a cascade effect of Atari’s hubris
- E.T. rushed to market in only 5 weeks to hit stores in time for holiday season
 - http://www.youtube.com/v/VakiwDmJ-lI
 - Widely considered Worst Game Ever
 - Atari paid $20-25 million for the rights
 - 1.5 million sold
 - 8th best selling Atari cartridge of all time
 - 4 million manufactured
- Rushed, weak port of Pac-Man
 - 12 million manufactured
 - Only 10 million Ataris in homes at the time
 - Atari assumed people would buy 2600s to play Pac-Man
 - 7 million sold
 - Ms. Pac-Man port & homebrew Pac-Mans are better

Photo and info from Wikipedia

The Video Game Crash of 1984 (2)

- Millions of cartridges of E.T. and Pac-Man encased in concrete and secretly dumped in landfill
- In 1982, Atari CEO Ray Kassar sells off 5,000 of his Warner (Atari’s parent company) stock just before a low earnings report drops Warner stock by 40%
 - SEC investigated for insider trading
 - Settled, returned profits
 - Later cleared by SEC
 - Forced to resign in 1983

Info from Wikipedia

Nintendo NES (1985 U.S. release)

- ≈1.8 MHz 6502 core, with DMA controller and sound hardware on-die (Ricoh)
- Called “Famicom” in most of Asia (1983 in Japan)
- Bundled with Super Mario Bros. - “killer app”
- Launch price: $200; final bundle: $50
- Discontinued in 1995
- 62 million sold
- Competition:
 - Sega SG-1000 (1985 Japan)
 - Renamed Sega Master System (1986 U.S.)
 - Didn’t catch on in the U.S.
 - Atari 7800 - last gasp, bombed

Pics and info from Wikipedia

Nintendo NES - Graphics

- Ricoh-made “Picture Processing Unit”
 - ≈5.4 MHz, RP2C02
- 256x240 resolution
- 64 sprites (8x8 or 8x16 for all), 8 per scanline
- Tile patterns
- 25 colors per scanline:
 - 1 background
 - 4 sets of 3 tile colors
 - 4 sets of 3 sprite colors

Photo and info from wikipedia
Sega vs. Nintendo

- Blast Processing
 - http://www.youtube.com/v/K03fQKnN7VI
- Genesis Does what Nintendon’t
 - http://www.youtube.com/v/k7nsBoqJ6s8

Sega Genesis (1989)

- ≈7 MHz Motorola 68000
- ≈3.5 MHz Zilog Z80
 - Sound coprocessor
 - Backward compatibility with Sega Master System
- 64K main RAM for 68000
- 64K video RAM (not directly accessible)
- 8K secondary RAM for Z80
- 8K audio RAM
- ROM cartridges up to 4M
 - Can use bank switching for larger games
- Released as “Sega Mega Drive” in Japan (1988)
- 29 million sold

IBM PC compatibles

- Original IBM PC (1981)
 - ≈4.8 MHz 8088
 - 16K to 640K
 - CGA (640x200 B&W, 320x200 4-color, 160x100 16-color w/tricks)
- IBM PC AT (1984)
 - 6 MHz 80286, later 8 MHz
 - 256K to 16M
 - EGA (640x350 16-color from a palette of 64)
- VGA (1987)
 - Palette of 262,18 colors
 - 640x480, 16-colors
 - 320x200, 64-colors (Wolfenstein 3-D)
 - 320x240, 64-colors (Doom)
- Killer app: Lotus 123

Sega Genesis - Video

- “Video Display Processor” – descendent of the TMS9928 family used in ColecoVision (but not designed by TI)
- 320x224 resolution (complicated)
- 4 planes (2 scrolling playfields, 1 sprite plane, 1 ‘window’ plane)
- Up to 64 sprites
- 61 on-screen colors

- Nintendo’s answer, the Super NES, came later
 - 1990 Japan, 1991 U.S.
 - 49 million sold
 - Slower CPU, but nice graphics & audio chips

Most info from Wikipedia
TMS9928 note from Joe Zbiciak

Photo and info from Wikipedia
Doom (1993)

- Followed in footsteps of Wolfenstein 3-D (1992)
- Released as shareware!
 - Downloaded by 10 million people in two years
- Cleverness over hardware

Images and info from Wikipedia

John Carmack