Session 17: GPUs – Under the Hood

Prof. Aaron Lanterman
School of Electrical and Computer Engineering
Georgia Institute of Technology
Bandwidth –
Gravity of Modern Computer Systems

• The bandwidth between key components ultimately dictates system performance
 – Especially true for massively parallel systems processing massive amount of data
 – Tricks like buffering, reordering, caching can temporarily defy the rules in some cases
 – Ultimately, the performance goes falls back to what the “speeds and feeds” dictate
Interface “feeds and speeds”

• **AGP: Advanced Graphics Port** – an interface between the computer core logic and the graphics processor
 - AGP 1x: 266 MB/sec – twice as fast as PCI
 - AGP 2x: 533 MB/sec
 - AGP 4x: 1 GB/sec → AGP 8x: 2 GB/sec
 - 256 MB/sec readback from graphics to system

• **PCI-E: PCI Express** – a faster interface between the computer core logic and the graphics processor
 - PCI-E 1.0: 4 GB/sec each way → 8 GB/sec total
 - PCI-E 2.0: 8 GB/sec each way → 16 GB/sec total
3D Buzzwords

• Fill Rate – how fast the GPU can generate pixels, often a strong predictor for application frame rate

• Performance Metrics
 - Mtris/sec - Triangle Rate
 - Mverts/sec - Vertex Rate
 - Mpixels/sec - Pixel Fill (Write) Rate
 - Mtexels/sec - Texture Fill (Read) Rate
 - Msamples/sec - Antialiasing Fill (Write) Rate
Adding Programmability to the Graphics Pipeline

3D Application or Game

3D API: OpenGL or Direct3D

GPU Front End

Programmable Vertex Processor

Programmable Fragment Processor

Primitive Assembly

Rasterization & Interpolation

Raster Operations

Framebuffer

Pre-transformed Vertices

CPU – GPU Boundary

Vertex Index Stream

Assembled Polygons, Lines, and Points

Pixel Location Stream

Transformed Vertices

Transformed Pre-transformed Fragments

Transformed Fragments

GPU Command & Data Stream

Pre-transformed Vertices

Slide by David Kirk/NVIDIA and Wen-mei. W. Hwu, 2007, from UIUC ECE498 Lecture 5, Fall 2007; used with permission. See courses.ece.uiuc.edu/ece498/al1
Specialized Instructions (GeForce 6)

• Dot products
• Exponential instructions:
 – EXP, EXPP, LOG, LOGP
 – LIT (Blinn specular lighting model calculation!)
• Reciprocal instructions:
 – RCP (reciprocal)
 – RSQ (reciprocal square root!)
• Trignometric functions
 – SIN, COS

• Swizzling (swapping xyzw), write masking (only some xyzw get assigned), and negation is “free”

From GPU Gems 2, p. 484
Easy cross products and normalization

Vector Cross Product

```
# | i     j     k     | into R2.
# | R0.x   R0.y   R0.z   |
# | R1.x   R1.y   R1.z   |
MUL R2, R0.zxyw, R1.zyxw;        // swizzle
MAD R2, R0.yzxx, R1.zxyw, -R2;   // negation
```

Vector Normalize

```
# R1 = (nx,ny,nz)
#
# R0.xyz = normalize(R1)
# R0.w   = 1/sqrt(nx*nx + ny*ny + nz*nz)
DP3 R0.w, R1, R1;
RSQ R0.w, R0.w;                // write-mask
MUL R0.xyz, R1, R0.w;          // promotion
```

CS448 Lecture 12
Kurt Akeley, Pat Hanrahan, Fall 2001

From Stanford CS448A: Real-Time Graphics Architectures
See graphics.stanford.edu/courses/cs448a-01-fall
Blinn lighting in one instruction

```
LIT   d, s

s.x = N \cdot L
s.y = N \cdot H
s.z = s

(-128 < m < 128)

d.x = 1.0
D.y = \text{CLAMP}(N \cdot L, 0, 1)
d.z = \text{CLAMP}(N \cdot H, 0, 1)^s
d.w = 1.0
```

From Stanford CS448A: Real-Time Graphics Architectures
See graphics.stanford.edu/courses/cs448a-01-fall
Simple graphics pipeline

```
# c[0-3] = Mat; c[4-7] = Mat^(-T)
# c[32] = L; c[33] = H
# c[35].x = Md * Ld; c[35].y = Ma * La
# c[36] = Ms; c[38].x = s
DP4 o[HPOS].x, c[0], v[OPOS];                  # Transform position.
DP4 o[HPOS].y, c[1], v[OPOS];
DP4 o[HPOS].z, c[2], v[OPOS];
DP4 o[HPOS].w, c[3], v[OPOS];
DP3 R0.x, c[4], v[NRML];                       # Transform normal.
DP3 R0.y, c[5], v[NRML];
DP3 R0.z, c[6], v[NRML];
DP3 R1.x, c[32], R0;                           # R1.x = L DOT N
DP3 R1.y, c[33], R0;                           # R1.y = H DOT N
MOV R1.w, c[38].x;
LIT R2, R1;
MAD R3, c[35].x, R2.y, c[35].y;               # diffuse + ambient
MAD o[COL0].xyz, c[36], R2.z, R3;             # + specular
END
```
The GeForce Graphics Pipeline

Slide by David Kirk/NVIDIA and Wen-mei. W. Hwu, 2007, from UIUC ECE498 Lecture 5, Fall 2007; used with permission.
See courses.ece.uiuc.edu/ece498/al1
Vertex Cache

- Temporary store for vertices, used to gain higher efficiency
- Re-using vertices between primitives saves AGP/PCI-E bus bandwidth
- Re-using vertices between primitives saves GPU computational resources
- A vertex cache attempts to exploit “commonality” between triangles to generate vertex reuse
- Unfortunately, many applications do not use efficient triangular ordering
Texture Cache

- Stores temporally local texel values to reduce bandwidth requirements
- Due to nature of texture filtering high degrees of efficiency are possible
- Efficient texture caches can achieve 75% or better hit rates
- Reduces texture (memory) bandwidth by a factor of four for bilinear filtering
Built-in Texture Filtering (GeForce 6)

- **Pixel texturing**
 - Hardware supports 2D, 3D, and cube map
 - Non power-of-2 textures OK
 - Hardware handles addressing and interpolation for you
 - Bilinear, trilinear (3D or mipmap), anisotropic

- **Vertex texturing**
 - Vertex processors can access texture memory too
 - Only nearest-neighbor filtering supported in G60 hardware
ROP (from Raster Operations)

- C-ROP performs frame buffer blending
 - Combinations of colors and transparency
 - Antialiasing
 - Read/Modify/Write the Color Buffer
- Z-ROP performs the Z operations
 - Determine the visible pixels
 - Discard the occluded pixels
 - Read/Modify/Write the Z-Buffer
- ROP on GeForce also performs
 - “Coalescing” of transactions
 - Z-Buffer compression/decompression

Slide by David Kirk/NVIDIA and Wen-mei. W. Hwu, 2007, from UIUC ECE498 Lecture 5, Fall 2007; used with permission. See courses.ece.uiuc.edu/ece498/al1
The Frame Buffer

- The primary determinant of graphics performance other than the GPU
- The most expensive component of a graphics product other than the GPU
- Memory bandwidth is the key
- Frame buffer size also determines
 - Local texture storage
 - Maximum resolutions
 - Anitaliasing resolution limits
Frame Buffer Interface (FBI)

- Manages reading from and writing to frame buffer
- Perhaps the most performance-critical component of a GPU
- GeForce’s FBI is a crossbar
- Independent memory controllers for 4+ independent memory banks for more efficient access to frame buffer
GeForce 7800 GTX Board Details

- 256MB/256-bit DDR3
- 600 MHz
- 8 pieces of 8Mx32
- 16x PCI-Express
- SLI Connector
- Single slot cooling
- DVI x 2
- sVideo
- TV Out

Slide by David Kirk/NVIDIA and Wen-mei W. Hwu, 2007, from UIUC ECE498 Lecture 6, Fall 2007; used with permission
See courses.ece.uiuc.edu/ece498/al1
From www.xbitlabs.com/articles/video/display/g70-indepth.html

NVIDIA 7800 GTX

G70 Architecture

Vertex Processors

Host / FW / VTF

Cull / Clip / Setup

Z-Cull

Shader Instruction Dispatch

Pixel Processors

L2 Tex

Fragment Crossbar

ROPs (Raster Op. Units)

Memory Partition

Memory Partition

Memory Partition

Memory Partition

DRAM(s)

DRAM(s)

DRAM(s)

DRAM(s)
NVIDIA 7800 GTX - Pixel Processors

8 MADD (multiply/add) instructions in a single cycle

7800 GTX has 24 of these!
NVIDIA 7800 GTX - Vertex Processors

7800 GTX has 8 of these!