LF444
Quad Low Power JFET Input Operational Amplifier

General Description
The LF444 quad low power operational amplifier provides many of the same AC characteristics as the industry standard LM148 while greatly improving the DC characteristics of the LM148. The amplifier has the same bandwidth, slew rate, and gain (10 kΩ load) as the LM148 and only draws one fourth the supply current of the LM148. In addition the well matched high voltage JFET input devices of the LF444 reduce the input bias and offset currents by a factor of 10,000 over the LM148. The LF444 also has a very low equivalent input noise voltage for a low power amplifier. The LF444 is pin compatible with the LM148 allowing an immediate 4 times reduction in power drain in many applications. The LF444 should be used wherever low power dissipation and good electrical characteristics are the major considerations.

Features
- ¼ supply current of a LM148: 200 µA/Amplifier (max)
- Low input bias current: 50 pA (max)
- High gain bandwidth: 1 MHz
- High slew rate: 1 V/µs
- Low noise voltage for low power: 35 nV/√Hz
- Low input noise current: 0.01 pA/√Hz
- High input impedance: 10^12 Ω
- High gain: 50k (min)

Connection Diagram
- Dual-In-Line Package
- Top View

Ordering Information
LF444XYZ
X indicates electrical grade
Y indicates temperature range
“M” for military, “C” for commercial

Z indicates package type “D”, “M” or “N”

© 2004 National Semiconductor Corporation www.national.com
Absolute Maximum Ratings (Note 11)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

<table>
<thead>
<tr>
<th></th>
<th>LF444A</th>
<th>LF444</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>±22V</td>
<td>±18V</td>
</tr>
<tr>
<td>Differential Input Voltage</td>
<td>±38V</td>
<td>±30V</td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>±19V</td>
<td>±15V</td>
</tr>
<tr>
<td>Output Short Circuit Duration (Note 2)</td>
<td>Continuous</td>
<td>Continuous</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>900 mW</td>
<td>670 mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T\textsubscript{j} max</td>
<td>150˚C</td>
<td>115˚C</td>
</tr>
<tr>
<td>(\theta_{ja}) (Typical)</td>
<td>100˚C/W</td>
<td>85˚C/W</td>
</tr>
</tbody>
</table>

DC Electrical Characteristics (Note 5)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LF444A</th>
<th>LF444</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Conditions</td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>V\textsubscript{OS}</td>
<td>Input Offset Voltage</td>
<td>(R_s = 10k, T_A = 25˚C)</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0˚C \leq T_A \leq +70˚C)</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-55˚C \leq T_A \leq +125˚C)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>(\Delta V_{OS}/\Delta T)</td>
<td>Average TC of Input Offset Voltage</td>
<td>(R_s = 10 \text{k}\Omega)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>I\textsubscript{OS}</td>
<td>Input Offset Current</td>
<td>(V_s = \pm 15V) (Notes 5, 6)</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_j = 25˚C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_j = 70˚C)</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_j = 125˚C)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>I\textsubscript{B}</td>
<td>Input Bias Current</td>
<td>(V_s = \pm 15V) (Notes 5, 6)</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_j = 25˚C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_j = 70˚C)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_j = 125˚C)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>R\textsubscript{IN}</td>
<td>Input Resistance</td>
<td>(T_j = 25˚C)</td>
<td>10(^{12})</td>
<td></td>
</tr>
<tr>
<td>A\textsubscript{VOL}</td>
<td>Large Signal Voltage Gain</td>
<td>(V_s = \pm 15V, V_O = \pm 10V)</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_L = 10 \text{k}\Omega, T_A = 25˚C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over Temperature</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>V\textsubscript{O}</td>
<td>Output Voltage Swing</td>
<td>(V_s = \pm 15V, R_L = 10 \text{k}\Omega)</td>
<td>(\pm 12)</td>
<td>(\pm 13)</td>
</tr>
<tr>
<td>V\textsubscript{CM}</td>
<td>Input Common-Mode Voltage Range</td>
<td>(\pm 16)</td>
<td>(\pm 18)</td>
<td></td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-Mode Rejection Ratio</td>
<td>(R_s \leq 10 \text{k}\Omega)</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>PSRR</td>
<td>Supply Voltage Rejection Ratio</td>
<td>(Note 7)</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>I\textsubscript{s}</td>
<td>Supply Current</td>
<td></td>
<td>0.6</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Soldering Information

Dual-In-Line Packages

Small Outline Package

Vapor Phase (60 sec.) 215˚C

Infrared (15 sec.) 220˚C

See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface mount devices.

Operating Temperature Range

(Note 4)

Storage Temperature Range

\(-65˚C \leq T_A \leq 150˚C\)

ESD Tolerance (Note 10) Rating to be determined

www.national.com 2
AC Electrical Characteristics (Note 5)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>LF444A</th>
<th>LF4444</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td></td>
<td>Amplifier-to-Amplifier</td>
<td></td>
<td>−120</td>
<td>−120</td>
<td>dB</td>
</tr>
<tr>
<td>SR</td>
<td>Slew Rate</td>
<td>V_S = ±15V, T_A = 25˚C</td>
<td>1</td>
<td>1</td>
<td>V/µs</td>
</tr>
<tr>
<td>GBW</td>
<td>Gain-Bandwidth Product</td>
<td>V_S = ±15V, T_A = 25˚C</td>
<td>1</td>
<td>1</td>
<td>MHz</td>
</tr>
<tr>
<td>e_n</td>
<td>Equivalent Input Noise Voltage</td>
<td>T_A = 25˚C, R_S = 100Ω, f = 1 kHz</td>
<td>35</td>
<td>35</td>
<td>nV/√Hz</td>
</tr>
<tr>
<td>l_n</td>
<td>Equivalent Input Noise Current</td>
<td>T_A = 25˚C, f = 1 kHz</td>
<td>0.01</td>
<td>0.01</td>
<td>pA/√Hz</td>
</tr>
</tbody>
</table>

Note 1: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.

Note 2: Any of the amplifier outputs can be shorted to ground indefinitely, however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.

Note 3: For operating at elevated temperature, these devices must be derated based on a thermal resistance of θ_JA.

Note 4: The LF444A is available in both the commercial temperature range 0˚C ≤ T_A ≤ 70˚C and the military temperature range −55˚C ≤ T_A ≤ 125˚C. The LF444 is available in the commercial temperature range only. The temperature range is designated by the position just before the package type in the device number. A “C” indicates the commercial temperature range and an “M” indicates the military temperature range. The military temperature range is available in “D” package only.

Note 5: Unless otherwise specified the specifications apply over the full temperature range and for V_S = ±15V for the LF444A and for V_S = ±20V for the LF444. V_DS, I_P, and I_DS are measured at V_CM = 0.

Note 6: The input bias currents are junction leakage currents which approximately double for every 10˚C increase in the junction temperature, T_J. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, P_D = T_A + θ_JA P_D where θ_JA is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.

Note 7: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice from ±15V to ±5V for the LF444 and from ±20V to ±5V for the LF444A.

Note 8: Refer to RETS4544X for LF444MD military specifications.

Note 9: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.

Note 10: Human body model, 1.5 kΩ in series with 100 pF.

Note 11: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

Typical Performance Characteristics

![Input Bias Current](00915612)

![Input Bias Current](00915613)

www.national.com
Typical Performance Characteristics

Supply Current

- Supply voltage (±V) vs. supply current (μA)
 - Temperature points: 25°C, 55°C, 125°C

Positive Common-Mode Input Voltage Limit

- Positive supply voltage (V) vs. positive common-mode input voltage limit (V)
 - Temperature range: 55°C ≤ TA ≤ 125°C

Negative Common-Mode Input Voltage Limit

- Negative supply voltage (V) vs. negative common-mode input voltage limit (V)
 - Temperature range: 55°C ≤ TA ≤ 125°C

Positive Current Limit

- Output source current (mA) vs. positive output voltage swing (V)
 - Conditions: V_S = ±15V
 - Temperature points: 55°C, 125°C

Negative Current Limit

- Output sink current (mA) vs. negative output voltage swing (V)
 - Conditions: V_S = ±15V
 - Temperature points: 55°C, 125°C

Output Voltage Swing

- Supply voltage (±V) vs. output voltage swing (Vp-p)
 - Conditions: R_L = 10k;
 - Temperature range: 55°C ≤ TA ≤ 125°C

www.national.com
Typical Performance Characteristics (Continued)

Output Voltage Swing
- $V_s = \pm 15V$
- $T_A = 25^\circ C$
- R_L - OUTPUT LOAD (kΩ)

Gain Bandwidth
- $V_s = \pm 15V$
- $R_L = 10k$
- $C_L = 100$ pF

Bode Plot
- $V_s = \pm 15V$
- $R_L = 10k$
- $C_L = 100$ pF

Slew Rate
- $V_s = \pm 15V$
- $R_L = 10k$

Distortion vs Frequency
- $V_s = \pm 15V$
- $T_A = 25^\circ C$
- $A_V = 100$

Undistorted Output Voltage Swing
- $V_s = \pm 15V$
- $R_L = 10k$
- $T_A = 25^\circ C$
- $A_V = 10$
- <1% DIST
Typical Performance Characteristics (Continued)

Open Loop Frequency Response

- $R_L = 10k$
- $V_S = \pm 15V$
- $T_A = 25^\circ C$

Common-Mode Rejection Ratio

- $V_S = \pm 15V$
- $R_L = 10k$
- $T_A = 25^\circ C$

Power Supply Rejection Ratio

- $V_S = \pm 15V$
- $T_A = 25^\circ C$

Equivalent Input Noise Voltage

Open Loop Voltage Gain

- $R_L = 10k$

Output Impedance

- $V_S = \pm 15V$
- $T_A = 25^\circ C$
Typical Performance Characteristics (Continued)

Inverter Settling Time

Pulse Response \(R_L = 10 \, k\Omega, C_L = 10 \, pF \)

Small Signal Inverting

Small Signal Non-Inverting

Large Signal Inverting

Large Signal Non-Inverting

Application Hints

This device is a quad low power op amp with JFET input devices (BI-FET™). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.
Application Hints (Continued)

Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3V of the negative supply, an increase in input offset voltage may occur.

Each amplifier is individually biased to allow normal circuit operation with power supplies of ±3.0V. Supply voltages less than these may degrade the common-mode rejection and restrict the output voltage swing.

The amplifiers will drive a 10 kΩ load resistance to ±10V over the full temperature range. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize “pick-up” and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.
Typical Application

pH Probe Amplifier/Temperature Compensator

For R2 = 50k, R4 = 330k ±1%
For R2 = 100k, R4 = 75k ±1%
For R2 = 200k, R4 = 56k ±1%

"Polystyrene"

Film resistor type RN60C

To calibrate, insert probe in pH = 7 solution. Set the "TEMPERATURE ADJUST" pot, R2, to correspond to the solution temperature: full clockwise for 0°C, and proportionately for intermediate temperatures, using a turns-counting dial. Then set "CALIBRATE" pot so output reads 7V.

Typical probe = Ingold Electrodes #465-35
Physical Dimensions

inches (millimeters)

unless otherwise noted

Order Number LF444MD/883
See NS Package Number D14E

Order Number LF444CM or LF444CMX
See NS Package Number M14A
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Order Number LF444ACN or LF444CN
See NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no “Banned Substances” as defined in CSP-9-111S2.