1 Description

The DEM-OPA86xD demonstration board is a generic, unpopulated printed circuit board (PCB) for single operational transconductance amplifiers in SO-8 packages. Figure 1 shows the package pinout for this PCB. For more information on these op amps, as well as good PCB layout techniques, see the individual amplifier data sheets.

![Figure 1. SO Package Pinout, Top View](image)

2 Circuit

The circuit schematic in Figure 2 shows the connections for all possible components. Each configuration uses only some of the components.

![Figure 2. Schematic for DEM-OPA86xD](image)
3 Components

Components that have RF performance similar to the ones in Table 1 may be substituted.

<table>
<thead>
<tr>
<th>PART</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{BP, U}, C_{BN, U}</td>
<td>Tantalum Chip Capacitor, SMD EIA Size 3528, 20V</td>
</tr>
<tr>
<td>C_{BP, N}, C_{BN, N}, C_{D}, C_{E}</td>
<td>Multilayer Ceramic Chip Capacitor, SMD 1206, 50V</td>
</tr>
<tr>
<td>OTA_IN, OTA_OUT, BUF_IN, BUF_OUT</td>
<td>SMA or SMB Board Jack (Amphenol 901-144-8)</td>
</tr>
<tr>
<td>L_P, L_N</td>
<td>EMI-Suppression Ferrite Chip, SMD 1206 (Steward LI 1206 B 900 R)</td>
</tr>
<tr>
<td>TB</td>
<td>Terminal Block, 3.5mm Centers (On-Shore Technology ED555/3DS)</td>
</tr>
<tr>
<td>R_{XXX}</td>
<td>Metal Film Chip Resistor, SMD 1206, 1/8W</td>
</tr>
</tbody>
</table>

Table 1. Component Descriptions

Please refer to Figure 3 for the location of the following components:

- R_{B2}, R_{C1}, and R_{C2} set the desired input/output impedances of the OTA section.
- R_{BIN2}, R_{BOUT1}, and R_{BOUT2} set the desired input/output impedances of the buffer section.
- R_{BIN1}, and R_{B1} are used to form a band-limiting pole at high frequency with the parasitic input capacitance.
- Either R_{Q1} or R_{Q2} is used to set the quiescent current of the OTA section.
- R_E (used in conjunction with R_{C1} and R_{C2}) sets the gain.
- R_1, R_2, C_{C}, and C_{E} are used in application circuits. Please refer to the individual product data sheet when using these components.
4 Board Layout

This demonstration board is a four-layer PCB. It uses both a ground plane and power traces on the inner layers. The ground plane has been opened up around op amp pins that are sensitive to capacitive loading. Power-supply traces are laid out to keep current loop areas to a minimum. The SMA (or SMB) connectors may be mounted either vertically or horizontally onto the board edge. The location and type of capacitors used for power-supply bypassing are crucial for high-frequency amplifiers. The tantalum capacitors, $C_{BP,U}$ and $C_{BN,U}$, do not need to be close to pins 4 and 7 on the PCB and may be shared with other amplifiers. See the individual op amp data sheet for more information on proper board layout techniques and component selection.

![Board Layout Diagrams]

Figure 3. DEM-OPA86xD Demonstration Board Layout

5 Measurement Tips

This demonstration board, and the component values shown, is designed to operate in a 50Ω environment; most data sheet plots are obtained this way. It is easy to change the component values for different input and output impedance levels. However, do not use high impedance probes; they represent a heavy capacitive load to the op amp, and will alter the amplifier response. Instead, use low impedance ($\leq 500\Omega$) probes with adequate bandwidth. The probe input capacitance and resistance set an upper limit on the measurement bandwidth. If a high impedance probe must be used, place a 100Ω resistor on the probe tip to isolate its capacitance from the circuit.
FCC Warnings

This equipment is intended for use in a laboratory test environment only. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVM IMPORTANT NOTICE

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation kit being sold by TI is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not considered by TI to be fit for commercial use. As such, the goods being provided may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety measures typically found in the end product incorporating the goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may not meet the technical requirements of the directive.

Should this evaluation kit not meet the specifications indicated in the EVM User's Guide, the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Please be aware that the products received may not be regulatory compliant or agency certified (FCC, UL, CE, etc.). Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE to the other FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the EVM User's Guide and, specifically, the EVM Warnings and Restrictions notice in the EVM User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact the TI application engineer.

Persons handling the product must have electronics training and observe good laboratory practice standards.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

EVM WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the input voltage range of ±6V and the output voltage range of -6V to +6V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than +50°C. The EVM is designed to operate properly with certain components above +50°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2005, Texas Instruments Incorporated
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Interface</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td></td>
<td>Telephony</td>
</tr>
<tr>
<td></td>
<td>Video & Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated