Low Noise, Matched Dual Monolithic Transistor

MAT02

FEATURES
Low Offset Voltage: 50 µV max
Low Noise Voltage at 100 Hz, 1 mA: 1.0 nV/√Hz max
High Gain (hFE): 500 min at IC = 1 mA
300 min at IC = 1 µA
Excellent Log Conformance: rBE = 0.3 Ω
Low Offset Voltage Drift: 0.1 µV/°C max
Improved Direct Replacement for LM194/394
Available in Die Form

PRODUCT DESCRIPTION
The design of the MAT02 series of NPN dual monolithic transistors is optimized for very low noise, low drift, and low rBE. Precision Monolithics’ exclusive Silicon Nitride “Triple-Passivation” process stabilizes the critical device parameters over wide ranges of temperature and elapsed time. Also, the high current gain (hFE) of the MAT02 is maintained over a wide range of collector current. Exceptional characteristics of the MAT02 include offset voltage of 50 mV max (A/E grades) and 150 µV max F grade. Device performance is specified over the full military temperature range as well as 25°C.

Input protection diodes are provided across the emitter-base junctions to prevent degradation of the device characteristics due to reverse-biased emitter current. The substrate is clamped to the most negative emitter by the parasitic isolation junction created by the protection diodes. This results in complete isolation between the transistors.

The MAT02 should be used in any application where low noise is a priority. The MAT02 can be used as an input stage to make an amplifier with noise voltage of less than 1.0 nV/√Hz at 100 Hz. Other applications, such as log/antilog circuits, may use the excellent logging conformation of the MAT02. Typical bulk resistance is only 0.3 Ω to 0.4 Ω. The MAT02 electrical characteristics approach those of an ideal transistor when operated over a collector current range of 1 µA to 10 mA.

ABSOLUTE MAXIMUM RATINGS

Collector-Base Voltage (BVCEO)	40 V
Collector-Emitter Voltage (BVCE0)	40 V
Collector-Collector Voltage (BVCC)	40 V
Emitter-Emitter Voltage (BVEE)	40 V
Collector Current (IC)	20 mA
Emitter Current (IE)	20 mA

Total Power Dissipation
- Case T temperature ≤ 40°C² | 1.8 W
- Ambient T temperature ≤ 70°C³ | 500 mW

Operating T temperature Range
- MAT02A | -55°C to +125°C
- MAT02E, F | -25°C to +85°C

Storage T temperature | -65°C to +150°C

Lead T temperature (Soldering, 60 sec) | +300°C

Junction T temperature | -65°C to +150°C

NOTES
1. Absolute maximum ratings apply to both DICE and packaged devices.
2. Rating applies to applications using heat sinking to control case temperature. Derate linearly at 16.4 mW/°C for case temperature above 40°C.
3. Rating applies to applications not using a heat sinking; devices in free air only. Derate linearly at 6.3 mW/°C for ambient temperature above 70°C.

ORDERING GUIDE

<table>
<thead>
<tr>
<th>Model</th>
<th>VOS max (TA = +25°C)</th>
<th>Temperature Range</th>
<th>Package Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT02A</td>
<td>50 µV</td>
<td>-55°C to +125°C</td>
<td>T0-78</td>
</tr>
<tr>
<td>MAT02E</td>
<td>50 µV</td>
<td>-55°C to +125°C</td>
<td>T0-78</td>
</tr>
<tr>
<td>MAT02F</td>
<td>150 µV</td>
<td>-55°C to +125°C</td>
<td>T0-78</td>
</tr>
</tbody>
</table>

NOTES
1. Burn-in is available on commercial and industrial temperature range parts in TO-can packages.
2. For devices processed in total compliance to MIL-STD-883, add /883 after part number. Consult factory for 883 data sheet.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
MAT02- SPECIFICATIONS

ELECTRICAL CHARACTERISTICS (@ $V_{CB} = 15$ V, $I_C = 10$ μA, $T_A = 25^\circ$C, unless otherwise noted.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>MAT02A/E</th>
<th>MAT02F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Gain</td>
<td>h_{FE}</td>
<td>$I_C = 1$ mA1</td>
<td>500</td>
<td>605</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_C = 100$ μA</td>
<td>500</td>
<td>590</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_C = 1$ μA</td>
<td>400</td>
<td>550</td>
</tr>
<tr>
<td>Current Gain Match</td>
<td>Δh_{FE}</td>
<td>10 μA $\leq I_C \leq 1$ mA2</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>Offset Voltage</td>
<td>V_{OS}</td>
<td>$V_{CB} = 0$, $I_C = 10$ μA $\leq I_C \leq 1$ mA3</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>Change vs. V_{CB}</td>
<td>$\Delta V_{OS}/\Delta V_{CB}$</td>
<td>0 $\leq V_{CB} \leq V_{MAX}$, V_{MAX}</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Offset Voltage Change vs. Collector Current</td>
<td>$\Delta V_{OS}/\Delta I_C$</td>
<td>$V_{CB} = 0$ V, 1 μA $\leq I_C \leq 1$ mA3</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Change vs. V_{CB}</td>
<td>$\Delta I_{OS}/\Delta V_{CB}$</td>
<td>0 $\leq V_{CB} \leq V_{MAX}$</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>Bulk Resistance</td>
<td>r_{BE}</td>
<td>10 μA $\leq I_C \leq 10$ μA5</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Collector-Base Leakage Current</td>
<td>I_{CBO}</td>
<td>$V_{CB} = V_{MAX}$</td>
<td>25</td>
<td>200</td>
</tr>
<tr>
<td>Collector-Collector</td>
<td>I_{CC}</td>
<td>$V_{CC} = V_{MAX}$, V_{MAX}</td>
<td>35</td>
<td>200</td>
</tr>
<tr>
<td>Collector-Emitter</td>
<td>I_{CES}</td>
<td>$V_{BE} = 0$</td>
<td>35</td>
<td>200</td>
</tr>
<tr>
<td>Noise Voltage Density</td>
<td>e_{n}</td>
<td>$I_C = 1$ mA, $V_{CB} = 0$ 7</td>
<td>1.6</td>
<td>2</td>
</tr>
<tr>
<td>Collector Saturation Voltage</td>
<td>$V_{CE(SAT)}$</td>
<td>$I_C = 1$ mA, $I_E = 100$ μA</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>I_B</td>
<td>$I_C = 10$ μA</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>I_{OS}</td>
<td>$I_C = 10$ μA</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Breakdown Voltage</td>
<td>$B V_{CEO}$</td>
<td>$I_C = 10$ μA</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Gain-Bandwidth Product</td>
<td>f_T</td>
<td>$I_C = 10$ mA, $V_{CE} = 10$ V</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>C_{OB}</td>
<td>$V_{CB} = 15$ V, $I_E = 0$</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Collector-Collector Capacitance</td>
<td>C_{CC}</td>
<td>$V_{CC} = 0$</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

NOTES

1. Current gain is guaranteed with Collector-Base Voltage (V_{CB}) swept from 0 to V_{MAX} at the indicated collector currents.

2. Current gain match (Δh_{FE}) is defined as:
 $$\Delta h_{FE} = \frac{100 (\Delta h_{FE}) (h_{FE_{min}})}{I_C}$$

3. Measured at $I_C = 10$ μA and guaranteed by design over the specified range of I_C.

4. This is the maximum change in V_{OS} as V_{CB} is swept from 0 V to 40 V.

5. Guaranteed by design.

6. ICC and ICES are verified by measurement of ICBO.

7. Sample tested.

Specifications subject to change without notice.
ELECTRICAL CHARACTERISTICS

Parameter	**Symbol**	**Conditions**	**MAT02E**	**MAT02F**	**Units**
Offset Voltage | V_{OS} | $V_{CB} = 0$
$1 \mu A \leq I_C \leq 1 mA$ | 70 | 220 | µV
Average Offset Voltage Drift | $T C V_{OS}$ | $10 \mu A \leq I_C \leq 1 mA$, $0 \leq V_{CB} \leq V_{MAX}$
V_{OS} trimmed to Zero | 0.08 0.3 | 0.08 1 | µV/°C
Input Offset Current | I_{OS} | $I_C = 10 \mu A$
$1 \mu A \leq I_C \leq 1 mA$ | 8 | 13 | nA
Input Offset Current Drift | $T C I_{OS}$ | $I_C = 10 \mu A$
$I_C = 1 mA$
$I_C = 100 \mu A$
$I_C = 10 \mu A$
$I_C = 1 \mu A$ | 10 | 150 | pA/°C
Input Bias Current | I_B | $I_C = 10 \mu A$
$I_C = 1 mA$
$I_C = 100 \mu A$
$I_C = 10 \mu A$
$I_C = 1 \mu A$ | 325 | 300 | nA
Input Current Gain | h_{FE} | $V_{CB} = V_{MAX}$ | 2 | 3 | nA
Collector-Base Leakage Current | I_{CBO} | $V_{CB} = V_{MAX}$ | 3 | 4 | nA
Collector-Emitter Leakage Current | I_{CES} | $V_{CE} = V_{MAX}$, $V_{BE} = 0$ | 3 | 4 | nA
Collector-Collector Leakage Current | I_{CC} | $V_{CC} = V_{MAX}$ | 3 | 4 | nA

ELECTRICAL CHARACTERISTICS

Parameter	**Symbol**	**Conditions**	**MAT02E**	**MAT02F**	**Units**
Offset Voltage | V_{OS} | $V_{CB} = 0$
$1 \mu A \leq I_C \leq 1 mA$ | 80 | | µV
Average Offset Voltage Drift | $T C V_{OS}$ | $10 \mu A \leq I_C \leq 1 mA$, $0 \leq V_{CB} \leq V_{MAX}$
V_{OS} trimmed to Zero | 0.08 0.3 | 0.08 1 | µV/°C
Input Offset Current | I_{OS} | $I_C = 10 \mu A$ | 9 | | nA
Input Offset Current Drift | $T C I_{OS}$ | $I_C = 10 \mu A$
$I_C = 1 mA$
$I_C = 100 \mu A$
$I_C = 10 \mu A$
$I_C = 1 \mu A$ | 40 90 | 40 150 | pA/°C
Input Bias Current | I_B | $I_C = 10 \mu A$
$I_C = 1 mA$
$I_C = 100 \mu A$
$I_C = 10 \mu A$
$I_C = 1 \mu A$ | 275 | 250 | nA
Input Current Gain | h_{FE} | $V_{CB} = V_{MAX}$ | 150 | | nA
Collector-Base Leakage Current | I_{CBO} | $V_{CB} = V_{MAX}$
$T_A = 125°C$ | 15 | | nA
Collector-Emitter Leakage Current | I_{CES} | $V_{CE} = V_{MAX}$, $V_{BE} = 0$
$T_A = 125°C$ | 50 | | nA
Collector-Collector Leakage Current | I_{CC} | $V_{CC} = V_{MAX}$
$T_A = 125°C$ | 30 | | nA

NOTES

1 Measured at $I_C = 10 \mu A$ and guaranteed by design over the specified range of I_C.
2 Guaranteed by V_{OS} test. $T = 298 K$ for $T_A = 25°C$.
3 The initial zero offset voltage is established by adjusting the ratio of I_C to I_C2 at $T_A = 25°C$. This ratio must be held to 0.003% over the entire temperature range. Measurements are taken at the temperature extremes and 25°C.
4 Guaranteed by design.

Specifications subject to change without notice.
MAT02

WAVER TEST LIMITS

[@ 25°C for $V_{CB} = 15$ V and $I_C = 10 \mu A$, unless otherwise noted.]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>MAT02N Limits</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakdown Voltage</td>
<td>BV_{CEO}</td>
<td>$10 \mu A \leq I_C \leq 1 mA$</td>
<td>40</td>
<td>V min</td>
</tr>
<tr>
<td>Offset Voltage</td>
<td>V_{OS}</td>
<td>$I_C = 1 mA, V_{CB} = 0 V$</td>
<td>150</td>
<td>µV max</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>I_{OS}</td>
<td>$I_C = 10 \mu A, V_{CB} = 0 V$</td>
<td>1.2</td>
<td>nA max</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>I_B</td>
<td></td>
<td>34</td>
<td>nA max</td>
</tr>
<tr>
<td>Current Gain</td>
<td>h_{FE}</td>
<td>$10 \mu A \leq I_C \leq 1 mA, V_{CB} = 0 V$</td>
<td>400</td>
<td>min</td>
</tr>
<tr>
<td>Current Gain Match</td>
<td>Δh_{FE}</td>
<td>$0 V \leq V_{CB} \leq 40 V$</td>
<td>300</td>
<td>µV max</td>
</tr>
<tr>
<td>Offset Voltage</td>
<td>$\Delta V_{DS/\Delta V_{CB}}$</td>
<td>$10 \mu A \leq I_C \leq 1 mA$</td>
<td>50</td>
<td>µV max</td>
</tr>
<tr>
<td>Offset Voltage Change</td>
<td>$\Delta V_{OS/\Delta I_C}$</td>
<td>$V_{CB} = 0$</td>
<td>50</td>
<td>µV max</td>
</tr>
<tr>
<td>vs. Collector Current</td>
<td>r_{BE}</td>
<td>$100 \mu A \leq I_C \leq 10 mA$</td>
<td>0.5</td>
<td>Ω max</td>
</tr>
<tr>
<td>Bulk Resistance</td>
<td>$V_{CE (SAT)}$</td>
<td>$I_C = 1 mA$</td>
<td>0.2</td>
<td>V max</td>
</tr>
<tr>
<td>Collector Saturation Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1 Measured at $I_C = 10 \mu A$ and guaranteed by design over the specified range of I_C.

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

TYPICAL ELECTRICAL CHARACTERISTICS

($V_{CB} = 15$ V, $I_C = 10 \mu A$, $T_A = +25°C$, unless otherwise noted.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>MAT02N Limits</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Offset Voltage</td>
<td>TCV_{OS}</td>
<td>$10 \mu A \leq I_C \leq 1 mA$</td>
<td>0.08</td>
<td>µV/°C</td>
</tr>
<tr>
<td>Voltage Drift</td>
<td>TCI_{OS}</td>
<td>$0 \leq V_{CB} \leq V_{MAX}$</td>
<td>40</td>
<td>pA/°C</td>
</tr>
<tr>
<td>Average Offset Current</td>
<td>f_T</td>
<td>$V_{CE} = 10 V, I_C = 10 mA$</td>
<td>200</td>
<td>MHz</td>
</tr>
<tr>
<td>Current Gain-Drift</td>
<td>$\Delta I_{OS/\Delta V_{CB}}$</td>
<td>$0 \leq V_{CB} \leq 40 V$</td>
<td>70</td>
<td>pA/V</td>
</tr>
</tbody>
</table>

DICE CHARACTERISTICS

1. COLLECTOR (1)
2. BASE (1)
3. EMITTER (1)
4. COLLECTOR (2)
5. BASE (2)
6. EMITTER (2)
7. SUBSTRATE

Die Size 0.061 × 0.057 inch, 3,477 sq. mils
(1.549 × 1.448 mm, 224 sq. mm)

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the MAT02 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Figure 10. Noise Current Density vs. Frequency

Figure 11. Total Noise vs. Collective Current

Figure 12. Collector-to-Base Leakage vs. Temperature

Figure 13. Collector-to-Collector Leakage vs. Temperature

Figure 14. Collector-to-Collector Capacitance vs. Collector-to-Substrate Voltage

Figure 15. Collector-Base Capacitance vs. Reverse Bias Voltage

Figure 16. Collector-to-Collector Capacitance vs. Reverse Bias Voltage

Figure 17. Emitter-Base Capacitance vs. Reverse Bias Voltage
LOG CONFORMANCE TESTING

The log conformance of the MAT02 is tested using the circuit shown above. The circuit employs a dual transdiode logarithmic converter operating at a fixed ratio of collector currents that are swept over a 10:1 range. The output of each transdiode converter is the V_{BE} of the transistor plus an error term which is the product of the collector current and r_{BE}, the bulk emitter resistance. The difference of the V_{BE} is amplified at a gain of $\times100$ by the AMP01 instrumentation amplifier. The differential emitter-base voltage (ΔV_{BE}) consists of a temperature-dependent dc level plus an ac error voltage which is the deviation from true log conformity as the collector currents vary.

The output of the transdiode logarithmic converter comes from the idealized intrinsic transistor equation (for silicon):

$$V_{BE} = \frac{kT}{q} \ln \frac{I_C}{I_S}$$ \hspace{1cm} (1)

$k = \text{Boltzmann's Constant} \quad (1.38062 \times 10^{-23} \text{ J/}°\text{K})$

$q = \text{Unit Electron Charge} \quad (1.60219 \times 10^{-19} \text{ C})$

$T = \text{Absolute Temperature, °K (} = °\text{C} + 273.2)$

$I_S = \text{Extrapolated Current for } V_{BE} \rightarrow 0$

$I_C = \text{Collector Current}$

An error term must be added to this equation to allow for the bulk resistance (r_{BE}) of the transistor. Error due to the op amp input current is limited by use of the OP15 BiFET-input op amp. The resulting AMP01 input is:

$$\Delta V_{BE} = \frac{kT}{q} \ln \frac{I_{C1}}{I_{C2}} + I_{C1} r_{BE1} - I_{C2} r_{BE2}$$ \hspace{1cm} (2)

A ramp function which sweeps from 1 V to 10 V is converted by the op amps to a collector current ramp through each transistor. Because I_{C1} is made equal to 10 I_{C2}, and assuming $T_A = 25°C$, the previous equation becomes:

$$\Delta V_{BE} = 59 \text{ mV} + 0.9 I_{C1} r_{BE} (\Delta r_{BE} \approx 0)$$

As viewed on an oscilloscope, the change in ΔV_{BE} for a 10:1 change in I_C is then displayed as shown below:
With the oscilloscope ac coupled, the temperature dependent term becomes a dc offset and the trace represents the deviation from true log conformity. The bulk resistance can be calculated from the voltage deviation \(\Delta V_O \) and the change in collector current (9 mA):

\[
r_{BE} = \frac{\Delta V_O}{9 \text{mA}} \times 1 \times \frac{1}{100}
\]

This procedure finds \(r_{BE} \) for Side A. Switching \(R_1 \) and \(R_2 \) will provide the \(r_{BE} \) for Side B. Differential \(r_{BE} \) is found by making \(R_1 = R_2 \).

APPLICATIONS: NONLINEAR FUNCTIONS MULTIPLIER/DIVIDER CIRCUIT

The excellent log conformity of the MAT02 over a very wide range of collector current makes it ideal for use in log-antilog circuits. Such nonlinear functions as multiplying, dividing, squaring, and square-rooting are accurately and easily implemented with a log-antilog circuit using two MAT02 pairs (see Figure 19). The transistor circuit accepts three input currents (\(I_1, I_2, \) and \(I_3 \)) and provides an output current \(I_O \) according to \(I_O = \frac{I_1 I_2}{I_3} \). All four currents must be positive in the log-antilog circuit, but negative input voltages can be easily accommodated by various offsetting techniques. Protective diodes across each base-to-emitter junction would normally be needed, but these diodes are built into the MAT02. External protection diodes are therefore not needed.

For the circuit shown in Figure 19, the operational amplifiers make \(I_1 = V_x/R_1, I_2 = V_y/R_2, I_3 = V_z/R_3, \) and \(I_O = V_O/R_O \). The output voltage for this one-quadrant, log-antilog multiplier/divider is ideally:

\[
V_O = \frac{R_3 R_O V_x V_y}{R_1 R_2 V_z} (V_x, V_y, V_z > 0)
\]

If all the resistors (\(R_O, R_1, R_2, R_3 \)) are made equal, then \(V_O = \frac{V_x V_y}{V_z} \). Resistor values of 50 k\(\Omega \) to 100 k\(\Omega \) are recommended assuming an input range of 0.1 V to +10 V.

ERROR ANALYSIS

The base-to-emitter voltage of the MAT02 in its forward active operation is:

\[
V_{BE} = kT/q \ln \frac{l_c}{I_S} + r_{BE} I_c, V_{CB} \sim 0
\]

The first term comes from the idealized intrinsic transistor equation previously discussed (see equation (1)).
Extrinsic resistive terms and the early effect cause departure from the ideal logarithmic relationship. For small V_{CB}, all of these effects can be lumped together as a total effective bulk resistance r_{BE}. The r_{BE} term for the MAT02 is less than 0.5 Ω and r_{BE} between the two sides is negligible.

Returning to the multiplier/divider circuit of Figure 1 and using Equation (4):

$$V_{BEA} + V_{BE2A} - V_{BE2B} - V_{BE1B} + (I_1 + I_2 - I_0 - I_3) r_{BE} = 0$$

If the transistor pairs are held to the same temperature, then:

$$\frac{kT}{q} \ln \frac{I_{12}}{I_{3}} = \frac{kT}{q} \ln \frac{I_{3A}}{I_{3B}} + (I_1 + I_2 - I_0 - I_3) r_{BE}$$

(6)

If all the terms on the right-hand side were zero, then we would have $I_{12} = I_3$, where I_1, I_2, I_3, $I_0 > 0$

$$I_0 = \frac{I_{12}}{I_3}, \text{ where } I_1, I_2, I_3, I_0 > 0$$

(7)

Note that this relationship is temperature independent. The right-hand side of Equation (6) is near zero and the output current I_0 will be approximately $I_1 I_2 I_3$. To estimate error, define ϕ as the right-hand side terms of Equation (6):

$$\phi = \ln \frac{I_{3A}}{I_{3B}} + \frac{kT}{q} (I_1 + I_2 - I_0 - I_3) r_{BE}$$

(8)

For the MAT02, $\ln (I_{3A}/I_{3B})$ and I_{CrBE} are very small. For small ϕ, $\phi \approx 1 + \phi$ and therefore:

$$\frac{I_{12}}{I_{3}} = 1 + \phi$$

(9)

$$I_0 \approx \frac{I_{12}}{I_3} (1 - \phi)$$

The $\ln (I_{3A}/I_{3B})$ terms in ϕ cause a fixed gain error of less than $\pm 0.6\%$ from each pair. For small ϕ, the gain error is easily trimmed out by varying R_O. The I_{CrBE} terms are more troublesome because they vary with signal levels and are multiplied by absolute temperature. At 25°C, kT/q is approximately 26 mV and the error due to an $r_{BE}IC$ term will be $r_{BE}IC/26$ mV. Using an r_{BE} of 0.4 Ω for the MAT02 and assuming a collector current range of up to 200 μA, then a peak error of 0.3% could be expected for an $r_{BE}IC$ error term when using the MAT02. Total error is dependent on the specific application configuration (multiply, divide, square, etc.) and the required dynamic range.

A powerful technique for reducing error due to I_{CrBE} is shown in Figure 20. A small voltage equal to I_{CrBE} is applied to the transistor base. For this circuit:

$$V_B = \frac{R_C}{R_2} V_1 \text{ and } I_{CrBE} = \frac{r_{BE}}{R_1} V_1$$

(10)

The error from $r_{BE}IC$ is cancelled if R_C/R_2 is made equal to r_{BE}/R_1. Since the MAT02 collector resistance is approximately 0.39 Ω, an R_C of 3.9 Ω and R_2 of 10 R_1 will give good error cancellation.

In more complex circuits, such as the circuit of Figure 19, it may be inconvenient to apply a compensation voltage to each individual base. A better approach is to sum all compensation to the bases of Q1. The "A" side needs a base voltage of $(V_0/R_0 + V_Z/R_3) r_{BE}$ and the "B" side needs a base voltage of $(V_0/R_1 + V_0/R_2) r_{BE}$. Linearity of better than $\pm 0.1\%$ is readily achievable with this compensation technique.

Operational amplifier offsets are another source of error. In Figure 20, the input offset voltage and input bias current will cause an error in collector current of $(V_{OS}/R_1) + I_B$. A low offset op amp, such as the OP07 with less than 75 μV of V_{OS} and I_B of less than ± 3 nA, is recommended. The OP22/OP32, a programmable micropower op amp, should be considered if low power consumption or single-supply operation is needed. The value of frequency-compensating capacitor (C_O) is dependent on the op amp frequency response and peak collector current. Typical values for C_O range from 30 pF to 300 pF.

FOUR-QUADRANT MULTIPLIER

A simplified schematic for a four-quadrant log/antilog multiplier is shown in Figure 21. As with the previously discussed one-quadrant multiplier, the circuit makes $I_{O} = I_1 I_2 I_3$. The two input currents, I_1 and I_2, are each offset in the positive direction. This positive offset is then subtracted out at the output stage. Assuming ideal op amps, the currents are:

$$I_1 = \frac{V_X}{R_1} + \frac{V_A}{R_2}, I_2 = \frac{V_Y}{R_1} + \frac{V_B}{R_2}$$

(11)

$$I_0 = \frac{V_X}{R_1} + \frac{V_X V_Y}{R_2} + \frac{V_B}{R_2} - \frac{V_A}{R_2} + \frac{V_A}{R_2} I_3 = \frac{V_B}{R_2}$$

From $I_0 = I_1 I_2 I_3$, the output voltage will be:

$$V_O = \frac{R_C}{R_2} \frac{V_X V_Y}{R_1} \frac{V_B}{R_2}$$

(12)
Collector-current range is the key design decision. The inherently low r_{BE} of the MAT02 allows the use of a relatively high collector current. For input scaling of ±10 V full-scale and using a 10 V reference, we have a collector-current range for I_1 and I_2 of:

\[
-10 \left(\frac{R_1}{R_1 + 10} \right) \leq I_c \leq 10 \left(\frac{R_1}{R_1 + 10} \right)
\]

Practical values for R_1 and R_2 would range from 50 kΩ to 100 kΩ. Choosing an R_1 of 82 kΩ and R_2 of 62 kΩ provides a collector-current range of approximately 39 µA to 283 µA. An R_O of 108 kΩ will then make the output scale factor 1/10 and $V_O = V_X V_Y/10$. The output, as well as both inputs, are scaled for ±10 V full-scale.

Linear error for this circuit is substantially improved by the small correction voltage applied to the base of Q1 as shown in Figure 21. Assuming an equal bulk emitter resistance for each MAT02 transistor, then the error is nullled if:

\[
(I_1 + I_2 - I_3 - I_0) r_{BE} + p V_O = 0
\]

The currents are known from the previous discussion, and the relationship needed is simply:

\[
V_O = \frac{r_{BE}}{R_O} V_O
\]

The output voltage is attenuated by a factor of r_{BE}/R_O and applied to the base of Q1 to cancel the summation of voltage drops due to $r_{BE}I_c$ terms. This will make $\ln (I_1 I_2 I_3 I_0)$ more nearly zero which will thereby make $I_0 = I_1 I_2 I_3$ a more accurate relationship. Linearity of better than 0.1% is readily achievable with this circuit if the MAT02 pairs are carefully kept at the same temperature.

MULTIFUNCTION CONVERTER

The multifunction converter circuit provides an accurate means of squaring, square rooting, and of raising ratios to arbitrary powers. The excellent log conformity of the MAT02 allows a wide range of exponents. The general transfer function is:

\[
V_O = V_Y \left(\frac{V_Z}{V_X} \right)^m
\]

V_X, V_Y, and V_Z are input voltages and the exponent “m” has a practical range of approximately 0.2 to 5. Inputs V_X and V_Y are often taken from a fixed reference voltage. With a REF01 providing a precision +10 V to both V_X and V_Y, the transfer function would simplify to:

\[
V_O = 10 \left(\frac{V_Z}{10} \right)^m
\]

As with the multiplier/divider circuits, assume that the transistor pairs have excellent matching and are at the same temperature. The $\ln I_{SA}/I_{SB}$ will then be zero. In the circuit of Figure 22, the voltage drops across the base-emitter junctions of Q1 provide:

\[
\frac{R_B}{R_B + K R_A} V_A = \frac{kT}{q} \ln \frac{I_Z}{I_X}
\]

I_Z is V_Z/R_1 and I_X is V_X/R_1. Similarly, the relationship for Q2 is:

\[
\frac{R_B}{R_B + (1-K) R_A} V_A = \frac{kT}{q} \ln \frac{I_O}{I_Y}
\]

I_O is V_O/R_O and I_Y is V_Y/R_1. These equations for Q1 and Q2 can then be combined.

\[
\frac{R_B + KR_A}{R_B + (1-K) R_A} \ln \frac{I_Z}{I_X} = \ln \frac{I_O}{I_Y}
\]

Figure 21. Four-Quadrant Multiplier
Substituting in the voltage relationships and simplifying leads to:

\[V_O = \frac{R_O}{R_1} V_Y \left(\frac{V_Z}{V_X} \right)^m, \text{ where} \]

\[m = \frac{R_B + KR_A}{R_B + (1 - K)R_A} \]

The factor "K" is a potentiometer position and varies from zero to 1.0, so "m" ranges from \(R_B/(R_A + R_B) \) to \((R_B + R_A)/R_B\). Practical values are 125 Ω for \(R_B \) and 500 Ω for \(R_A \); these values will provide an adjustment range of 0.2 to 5.0. A value of 100 kΩ is recommended for the \(R_1 \) resistors assuming a full-scale input range of 10 V. As with the one-quadrant multiplier/divider circuit previously discussed, the \(V_X \), \(V_Y \), and \(V_Z \) inputs must all be positive.

The op amps should have the lowest possible input offsets. The OP07 is recommended for most applications, although such programmable micropower op amps as the OP22 or OP32 offer advantages in low-power or single-supply circuits. The micropower op amps also have very low input bias-current drift, an important advantage in log/antilog circuits. External offset nulling may be needed, particularly for applications requiring a wide dynamic range. Frequency compensating capacitors, on the order of 50 pF, may be required for \(A_2 \) and \(A_3 \). Amplifier \(A_1 \) is likely to need a larger capacitor, typically 0.0047 μF, to assure stability.

Accuracy is limited at the higher input levels by bulk emitter resistance, but this is much lower for the MAT02 than for other transistor pairs. Accuracy at the lower signal levels primarily depends on the op amp offsets. Accuracies of better than 1% are readily achievable with this circuit configuration and can be better than ±0.1% over a limited operating range.

FAST LOGARITHMIC AMPLIFIER

The circuit of Figure 23 is a modification of a standard logarithmic amplifier configuration. Running the MAT02 at 2.5 mA per side (full-scale) allows a fast response with wide dynamic range. The circuit has a 7 decade current range, a 5 decade voltage range, and is capable of 2.5 μs settling time to 1% with a 1 V to 10 V step.

The output follows the equation:

\[V_O = \frac{R_3 + R_2} {R_2} \frac{kT}{q} \ln \frac{V_{REF}}{V_{IN}} \]

The output is inverted with respect to the input, and is nominally -1 V/decade using the component values indicated.

LOW-NOISE ×1000 AMPLIFIER

The MAT02 noise voltage is exceptionally low, only 1 nV/√Hz at 10 Hz when operated over a collector-current range of 1 mA to 4 mA. A single-ended ×1000 amplifier that takes advantage of this low MAT02 noise level is shown in Figure 24. In addition to low noise, the amplifier has very low drift and high CMRR. An OP32 programmable low-power op amp is used for the second stage to obtain good speed with minimal power consumption. Small-signal bandwidth is 1 MHz, slew rate is 2.4 V/μs, and total supply current is approximately 2.8 mA.
Transistors Q2 and Q3 form a 2 mA current source (0.65 V/330 Ω ~ 2 mA). Each collector of Q1 operates at 1 mA. The OP32 inputs are 3 V below the positive supply voltage (R\text{L}, I\text{C} ~ 3 V). The OP32's low input offset current, typically less than 1 nA, and low offset voltage of 1 mV cause negligible error when referred to the amplifier input. Input stage gain is g_m R\text{L}, which is approximately 100 when operating at I\text{C} of 1 mA with R\text{L} of 3 kΩ. Since the OP32 has a minimum open-loop gain of 500,000, total open-loop gain for the composite amplifier is over 50 million. Even at closed-loop gain of 1000, the gain error due to finite open-loop gain will be negligible. The OP32 features excellent symmetry of slew-rate and very linear gain. Signal distortion is minimal.

Frequency compensation is very easy with this circuit; just vary the set-resistor R\text{S} for the desired frequency response. Gain-bandwidth of the OP32 varies directly with the supply current. A set resistor of 549 kΩ was found to provide the best step response for this circuit. The resultant supply current is found from:

\[R_{\text{SET}} = \frac{(V^+)-(V^-)-(2V_{\text{BE}})}{I_{\text{SET}}}, I_{\text{SY}} = 15I_{\text{SET}} \]

(22)

The I_{\text{SET}} using ±15 V supplies and an R_{\text{SET}} of 549 kΩ, is approximately 52 µA which will result in supply current of 784 µA. Dynamic range of this amplifier is excellent; the OP32 has an output voltage swing of ±14 V with a ±15 V supply.

Input characteristics are outstanding. The MAT02F has an offset voltage of less than 150 µV at 25°C and a maximum offset drift of 1 µV/°C. Nulling the offset will further reduce offset drift. This can be accomplished by slightly unbalancing the collector load resistors. This adjustment will reduce the drift to less than 0.1 µV/°C.

Input bias current is relatively low due to the high current gain of the MAT02. The minimum β of 400 at 1 mA for the MAT02F implies an input bias current of approximately 2.5 µA.

This circuit configuration provides exceptionally low input noise voltage and low drift. Noise can be reduced even further by raising the collector currents from 1 mA to 3 mA, but power consumption is then increased.

Figure 23. Fast Logarithmic Amplifier

Figure 24. Low-Noise, Single-Ended X1000 Amplifier