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Abstract—Thomson’s multitaper method using discrete prolate
spheroidal sequences (DPSSs) is a widely used technique for
spectral estimation. For a signal of length N, Thomson’s method
requires selecting a bandwidth parameter W, and then uses
K ~ 2NW tapers. The computational cost of evaluating the
multitaper estimate at N grid frequencies is O(K N log N). It
has been shown that the choice of W and K which minimizes
the MSE of the multitaper estimate is W = O(N~'/®) and
K = O(N*/®). This choice would require a computational cost
of O(N%/®log N). We demonstrate an e-approximation to the
multitaper estimate which can be evaluated at NV grid frequencies
using O(N log® N'log 1) operations.

I. INTRODUCTION

Let z(t),t € R be a stationary, ergodic, zero-mean, Gaus-
sian stochastic process. The Cramer representation of z(t) is

given by ,
11/2

o) = [
—1/2

and the spectral density of x(t) is given by

S(Hdf =E [|dZ(f)F] -

The problem of spectral estimation is to estimate S(f) from
N equally spaced samples

x = [z(0) x(1)

e*T I dZ(f),

z(N-1)]" ecCV.

Thomson’s multitaper method for spectral estimation [6]
can be described as follows. For a given half-bandwidth
parameter W € (0, %), we define the Slepian basis vectors
80,81,...,8nv—1 € RN as the orthonormal eigenvectors of

the N x N prolate matrix B, whose entries are given by'
sin[27W (m — n)]

Blm.n] = w(m —n)

for m,n € [N].

The eigenvectors are ordered such that corresponding eigen-
values A\g > A} > --- > Ay_; are sorted in descending order.
For each k € [N], we can use sj, as a taper to define a single
tapered spectral estimate Sy (f), i.e.,

2

S(f) =D s[nlalnle 72"/
n=0

Then, we pick an integer K and define the unweighted
multitaper spectral estimate of x as

. 1
SR =2 > Su(h)-
k=0

"For any integer N, we define [N]:={n€Z:0<n < N —1}.
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Since the first slightly less than 2N Slepian basis vectors
have spectra concentrated in [—W, W], the number of tapers
K is usually chosen to be slightly less than 2N W. Thompson
also considered the eigenvalue weighted multitaper spectral
estimate [6]

K-1
N > AkSk(f)
SiE(f) = =0
> Ak
k=0

In many applications, it is desirable to estimate the spectrum
on a grid of N evenly spaced frequencies, i.e., f = & for
m € [N]. For each k € [K], evaluating Sy, (f) at all N grid fre-
quencies takes O(N log N) operations via a length-N FFT of
the elementwise product sy ox. After this, only O(K N) more
operations are needed to evaluate the weighted/unweighted
sum at all NV grid frequencies. Hence, the total computa-
tion required to evaluate either ST(f) or S32(f) at the N
grid frequencies can be done in O(K N log N) operations.
Also, the cost of precomputing the tapers sg,...,Sg_1 i8S
O(K N log N) operations, due to the fact that B commutes
with a tridiagonal matrix [5].

In [7], it is shown that if S(f) is twice differentiable, then
bias and variance of S%'(f) are bounded by

2
Bias (§}?(f)) < W?

var (SR() £ 5S(9*,

and thus, the mean-squared error is bounded by

S//(f)’

R 4
MSE (SR(1)) £ 58" ()7 + 257"

Since K ~ 2NW, this bound is minimized when

N 9S(f)]2/5 s N[mm]% e
w {25”(]‘) N and K () N=/°,

Similar analysis is done in [4] for sinusoidal tapers and in [1]
for Slepian tapers. In general, fewer tapers are used for more
rapidly varying spectra, but for any fixed spectrum S(f) and
for large N, the optimal number of tapers is K = O(N*/5).
However, this choice requires precomputing O(N 4/ 5) tapers
and then O(N*/%) length-N FFTs to evaluate :S'\;()( f) at all
N grid frequencies. This involves O(N%/?log N) operations.

In this work, we present approximations S3'(f) and S32(f)
to S™(f) and SS2(f) respectively which satisfy

-~

500 -5 < 293 toran s e,



and which can be evaluated at all grid frequencies in
O(N log? N log ) operations. Also, the required precompu—
tation for these appr0x1mat10ns takes only O(N log? N log )
operations. When the number of tapers is K = log N log

evaluating Sﬁ( (f) at the N grid frequencies will be signifi-

cantly faster than evaluating §§() (f) at the N grid frequencies.

II. INTERMEDIATE RESULTS

()

A. Fast algorithm for computing S

To begin developing our fast approximations for Sm‘( f) and
Si;g( f), we first consider the eigenvalue weighted multitaper
spectral estimate with N tapers instead of K ~ 2NW, ie.2

Aelg A

Swf 2NW Z Silf
Using an eigendecomposition, we can writt B = SAS™,
where S = [so SN_ 1} and A = diag(Ng,...,An—1).

Forany f € R, welet E; € CN*N be a diagonal matrix with
diagonal entries E ;[n,n] = /27" Then, S%2(f) satisfies

2NW S3E(f) =

=3 A spEja|”
;EfSAS*E’}w
“E;BE;x.

k
r
=

This gives us a a formula for SS2( f) which does not require
computing any of the Slepian tapers. Since B is a Toeplitz
matrix, it can be extended to a circulant matrix, which is
diagonalized by an FFT matrix. Using this fact, we can get an
alternate formula for S3F(%¥) for all m € [N] as follows.

First we define a vector of sinc samples

sin[2rW(]

N
ml te v,
b[t] ={0 (=N
sin[27W (2N — 0)]
e 2N]\[N+1

a zeropadding matrix

Inxn

Z =
|:ON><N:| ’

a length-2N FFT matrix defined by
Flm,n] = e~ 9™/~ for m,n € 2N],
and a vector

y=F! (b oF \FZ:I:\Q) ,

2Here, we have used the fact that Zk A =trB=2NW.

where we use the notation o to be the elementwise product,
i.e., (poq)[f] = p[f]q[f), and | | to denote the elementwise
magnitude-squared, i.e., (|p[*)[{] = |p[¢]|*.

With these definitions, we have S5¢(%2) = T Y[2m] for
all m € [N]. The derivation of this fact is deferred to a
future publication. Computing y = F~' (bo F|FZz|?) can
be done in O(N log N) operations via three length-2N FFTs
and a few pointwise multiplications of length-2/V vectors.
Then, we can obtain S5¢(%2) = say[2m] for m € [N]
by downsampling and scahng z.

B. Approximations for General Multitaper Spectral Estimates

Next, we present a lemma regarding approximations to
spectral estimates which use orthonormal tapers.

Lemma 1. Let © € CV be a vector of N equispaced samples,
and let {vk}ﬁ;ol be any orthonormal set of tapers in C. For
each k € [N, define a tapered spectral estimate

N-1 2

Z vi[n]x[n]e=I2™ /"

n=0

Vi(f) =

Also, let {Wk}kN;Ol and {ﬁk}i\;}l be real coefficients, and then
define a multitaper spectral estimate V(f) and an approxima-
tion V(f) by

N—

,_.

N—1
veVi(f) and V(f Z%Vk
k=0 k=0

Then, for any frequency f € R, we have
701 = 71| < (mpc b =3 ) ol

Proof. Let V = [vg vy-1], and let T, T € RV*N,

and Ey € CNxN be diagonal matrices whose diagonal entries

are T'[n,n] = v,, T[n,n] = 7, and Ef[n,n] = /27" for

n € [N]. Then, using a similar argument as used to show that
2NW S#(f) = *EyBE}x, one can show that

V(f)=2"E;VIV'E}z

and
V(f)=2*E;VIV'Ejz.
Since V' is orthonormal, ||V|| = |[V*|| = 1. Since Ey is

diagonal, and all the diagonal entries have modulus 1, [|[E¢|| =
| E}|l = 1. Hence, for any f € R, we can bound

V) - f)‘ - ‘:C*EfV (r - f) V'Ex

< el | BV T - BV 112
= (maxlow ~l ) el

as desired. ]



C. Prolate matrix eigenvalue behavior

The eigenvalues \yg > Ay > --- > Ay_; of B are all
strictly between 0 and 1, and they have a clustering behavior.
For fixed W € (0, 3) and € € (0, 3) and large N, slightly less
than 2NW eigenvalues are between 1 — € and 1, slightly less
than N — 2NW eigenvalues are between 0 and ¢, and very
few eigenvalues are between e and 1 — e. In [2], it is shown
that for fixed W € (0, 3) and € € (0, 3),

1
#{k: E<>\k<1—€}N10gN10g(—1)

as N — oo. Also, forany N € N, W € (0,4) and € € (0, 1),

4lke<h<l-d< (;log(8N)+12) log (165)

In the subsections that follow, we assume that for a given
N € Nand W € (0, 3), the parameters K and € € (0, 3) are
chosen such that A\ _1 > % and Mg < 1 — e. This restriction
only forces K to be slightly less than 2N W. We then partition
the indices [IV] into four sets

Iy ={ke|K]: \, >1—¢},
Io={ke[K|:e< A <1l—¢},
Is={k € [N]\[K]:e < A\ <1—¢€},
I4={kE[N]\[ ] )\k<6}

From the above theory, we have that #(Zy U Z3) = #{k :
€ < A < 1—¢} = O(logNlog?l). Hence, it is possible
to precompute the eigenvalues A; and DPSS tapers sj for all
k € ToUZs in O(N log® N log 1) operations. In the following
subsections, we will assume that we have precomputed \j and
sy, for all k € Z, U Z3, but not for any k € 77 U Zy.

ITI. FAST APPROXIMATIONS
A. Fast algorithm for approximating §;”(’(f)

The unweighted multitaper spectral estimate §}‘}‘( f) is given

by
>

k=0 k€T, ULy

().

We then define an approximation by

keZs

1~
k(N + > 25
k€L,
Thus, §m‘(f) and §m‘(f) can be written as
N1 _ R
YESk(f) and SRS =D ARSk(f)
k=0 k=0

where

2 kel Uy,
mt __ % k €Iy Uy, ~mt __ {i{ ' !
T =0 heT.UT and V' =4 3% kel

B 0 keI

We now consider gap* := |y — A|. For k € Z;, we have

A, > 1 — ¢, and thus,

)\k 1—)\k €
mt: _— | = < _
&4Px K —K
For k € I, UZ3 we have 7' = A7, ie., gapl' = 0. For

k € 14, we have A\, < e, and thus

Ak
0—2F
K

A €
2k &

gapr]:[ - K — K

Hence, gap}" < % for all k& € [N], and thus by Lemma 1,

we have

S5() = S| <

Finally, evaluating the approximation
~ INW ~ 1— X~ k
SR(f) = (H+> % Sk(f Z T Sk

7561,‘;
ke, €Ty
at the N grid frequencies requires evaluating §elg( f) and
Sk( f) for all k € ToUZ3 at the N grid frequencies. Evaluating
S;l,g( f) at the grid frequencies takes O(N log N) operations,
as shown in Section II-A. For each k& € 7, U Z3, evaluating
Sk( f) at the grid frequencies takes O(Nlog N) operations.
Since #(Z, UZ3) = O(logN log 1), the total computation
required is O(N log® N log 1) operatlons.

()

B. Fast algorithm for approximating S

€
2l

The eigenvalue weighted multitaper spectral estimate
SSE(£) is given by:

K-1
- kgo AkSk(f) N -
SE(f) = Kk~ Tsk(f)’
K
Y kET1UT,
k=0

where
XK —Z)\k— Z)\k+z)\k
ke, kETy

We then define an approximation by

. INW ~..
SE(f) = SN Z NSk (f
EK YK keTs
;N
== > MSe(f) - =— Z AkSk(f
XK 120 YK keZs
£ o
= = Sk(f)
kgZs YK
where

i}( =K — Z(l*)\k)
k€Zs

:ZlJrZ/\k.

kel ke€Za



Thus, SS2(f) and SS£(f) can be written as

elg Z /yelg and §elg Z "'elgSk
where
Mk Ak
Zig: ﬁ ]{/’EII U127 and 5}e€ig: i k’¢137'
0 k€ I3UTy, 0 k € Is.
To bound gap;® := — 38| we first note that
0< Sk —Ng = Z(l—)\k) < e#(Th) < Ke,
kel
and
K-1 K-1 K
2K>EK_ZAk> Z,\K 1=K k1> 5
k=0
For k € 7, UZ,, we have 0 < A\, < 1, and thus,
gapelg ’ )\k )\k: )\k(iK - ZK) 1- KG < 46
E s T = | T =~ ~ ~ —.
EK ZK EKZK (%)2 K

For k € T3 we have 7} = 37¢ = 0, ie., gap;® = 0. For

k € Z,, we have A\, < ¢, and thus,

— j\i <
Yk

2 _ de
=<
“K-K

K

M‘N‘ a

4
Hence, gap;® < EE for all k € [N], and thus by Lemma 1,

we have 4
Qe el €
S5es) - S| < Ll

Finally, evaluating the approximation

e ANW
SSE(f) = TSR (f) — =— EjAS
K (f) EK K = kRk

at the N grid frequencies can be done in O(N log? N log 1)
operations in a similar manner as can be done for ST(f).

IV. SIMULATIONS

To test our fast method for multitaper spectral estimation,
we first generate N = 220 samples of an ARMA(12,8) pro-
cess. We then try the following methods of spectral estimation:

1) Thomson’s unweighted multitaper method with W =
3.6 x 107° (2NW = 75.5), and K = 63 tapers.
2) Our fast approximation to Thomson’s unweighted multi-
taper method with W = 2.7 x 1073 2NW =~ 5662.3),
K = 5641 tapers, and an approximation parameter of
e=10"12,
Note that for both methods, the number of tapers K was
chosen such that Ag_; > 1 — 1072 > A, which severely
reduces the broadband bias of the tapered estimates. This
is necessary due to the high dynamic range of the true
spectrum. For the first method, the half-bandwidth parameter
W = 2.7 x 102 was chosen according to the optimal number

]L%tnnated Power Spectrum

108 £ EX'I(‘f \Iultlt'}pm E‘;flll‘l'].f(‘ W =36 x lll‘

Fast Multitaper Estimate W = 2.7 x 10~*
— True Spectrum
104k
S(f)

102k

100k

102k

Fig. 1. Plots of the spectrum of the ARMA(12,8) process, and the two
estimates of this spectrum.

of tapers suggested in [7]. For the second method, the half-
bandwidth parameter W = 3.6 x 10™® was chosen so that
both methods run in a comparable amount of time.

A plot the exact power spectrum of the ARMA(12,8)
process and the estimated spectra are shown in Figure 1.
The precomputation time, run time, and root-mean-squared-
logarithmic errors are shown in the table below. Both methods
run in approximately the same amount of time due to the
fact that our fast approximation only needed to compute
#(Z2UZ3) = 56 Slepian tapers. However, the fast approxima-
tion has greater accuracy due to the fact that it approximates
a multitaper estimate with K = 5641 tapers.

Method | Precomputation time | Time RMSLE

1 28.15 s 2.989 s | 0.5498 dB

2 2533 s 2932 s | 0.1602 dB
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