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Abstract—Thomson’s multitaper method using discrete prolate
spheroidal sequences (DPSSs) is a widely used technique for
spectral estimation. For a signal of length N , Thomson’s method
requires selecting a bandwidth parameter W , and then uses
K ≈ 2NW tapers. The computational cost of evaluating the
multitaper estimate at N grid frequencies is O(KN logN). It
has been shown that the choice of W and K which minimizes
the MSE of the multitaper estimate is W = O(N−1/5) and
K = O(N4/5). This choice would require a computational cost
of O(N9/5 logN). We demonstrate an ε-approximation to the
multitaper estimate which can be evaluated at N grid frequencies
using O(N log2N log 1

ε
) operations.

I. INTRODUCTION

Let x(t), t ∈ R be a stationary, ergodic, zero-mean, Gaus-
sian stochastic process. The Cramer representation of x(t) is
given by

x(t) =

∫ 1/2

−1/2

ej2πft dZ(f),

and the spectral density of x(t) is given by

S(f) df = E
[
| dZ(f)|2

]
.

The problem of spectral estimation is to estimate S(f) from
N equally spaced samples

x =
[
x(0) x(1) · · · x(N − 1)

]T ∈ CN .

Thomson’s multitaper method for spectral estimation [6]
can be described as follows. For a given half-bandwidth
parameter W ∈ (0, 1

2 ), we define the Slepian basis vectors
s0, s1, . . . , sN−1 ∈ RN as the orthonormal eigenvectors of
the N ×N prolate matrix B, whose entries are given by1

B[m,n] =
sin[2πW (m− n)]

π(m− n)
for m,n ∈ [N ].

The eigenvectors are ordered such that corresponding eigen-
values λ0 > λ1 > · · · > λN−1 are sorted in descending order.
For each k ∈ [N ], we can use sk as a taper to define a single
tapered spectral estimate Ŝk(f), i.e.,

Ŝk(f) =

∣∣∣∣∣
N−1∑
n=0

sk[n]x[n]e−j2πfn

∣∣∣∣∣
2

.

Then, we pick an integer K and define the unweighted
multitaper spectral estimate of x as

Ŝmt
K (f) =

1

K

K−1∑
k=0

Ŝk(f).

1For any integer N , we define [N ] := {n ∈ Z : 0 ≤ n < N − 1}.

Since the first slightly less than 2NW Slepian basis vectors
have spectra concentrated in [−W,W ], the number of tapers
K is usually chosen to be slightly less than 2NW . Thompson
also considered the eigenvalue weighted multitaper spectral
estimate [6]

Ŝeig
K (f) =

K−1∑
k=0

λkŜk(f)

K−1∑
k=0

λk

.

In many applications, it is desirable to estimate the spectrum
on a grid of N evenly spaced frequencies, i.e., f = m

N for
m ∈ [N ]. For each k ∈ [K], evaluating Ŝk(f) at all N grid fre-
quencies takes O(N logN) operations via a length-N FFT of
the elementwise product sk ◦x. After this, only O(KN) more
operations are needed to evaluate the weighted/unweighted
sum at all N grid frequencies. Hence, the total computa-
tion required to evaluate either Ŝmt

K (f) or Ŝeig
K (f) at the N

grid frequencies can be done in O(KN logN) operations.
Also, the cost of precomputing the tapers s0, . . . , sK−1 is
O(KN logN) operations, due to the fact that B commutes
with a tridiagonal matrix [5].

In [7], it is shown that if S(f) is twice differentiable, then
bias and variance of Ŝmt

K (f) are bounded by

Bias
(
Ŝmt
K (f)

)
.
W 2

6
S′′(f),

Var
(
Ŝmt
K (f)

)
.

1

K
S(f)2,

and thus, the mean-squared error is bounded by

MSE
(
Ŝmt
K (f)

)
.
W 4

36
S′′(f)2 +

1

K
S(f)2.

Since K ≈ 2NW , this bound is minimized when

W ∼
[

9S(f)

2S′′(f)

]2/5

N−1/5 and K ∼
[

12S(f)

S′′(f)

]2/5

N4/5.

Similar analysis is done in [4] for sinusoidal tapers and in [1]
for Slepian tapers. In general, fewer tapers are used for more
rapidly varying spectra, but for any fixed spectrum S(f) and
for large N , the optimal number of tapers is K = O(N4/5).
However, this choice requires precomputing O(N4/5) tapers
and then O(N4/5) length-N FFTs to evaluate Ŝ(·)

K (f) at all
N grid frequencies. This involves O(N9/5 logN) operations.

In this work, we present approximations S̃mt
K (f) and S̃eig

K (f)

to Ŝmt
K (f) and Ŝeig

K (f) respectively which satisfy∣∣∣Ŝ(·)
K (f)− S̃(·)

K (f)
∣∣∣ ≤ O(ε)

K
‖x‖22 for all f ∈ R,



and which can be evaluated at all grid frequencies in
O(N log2N log 1

ε ) operations. Also, the required precompu-
tation for these approximations takes only O(N log2N log 1

ε )
operations. When the number of tapers is K & logN log 1

ε ,
evaluating S̃

(·)
K (f) at the N grid frequencies will be signifi-

cantly faster than evaluating Ŝ(·)
K (f) at the N grid frequencies.

II. INTERMEDIATE RESULTS

A. Fast algorithm for computing Ŝeig
N (f)

To begin developing our fast approximations for Ŝmt
K (f) and

Ŝeig
K (f), we first consider the eigenvalue weighted multitaper

spectral estimate with N tapers instead of K ≈ 2NW , i.e.,2

Ŝeig
N (f) =

1

2NW

N−1∑
k=0

λkŜk(f).

Using an eigendecomposition, we can write B = SΛS∗,
where S =

[
s0 · · · sN−1

]
and Λ = diag(λ0, . . . , λN−1).

For any f ∈ R, we let Ef ∈ CN×N be a diagonal matrix with
diagonal entries Ef [n, n] = ej2πfn. Then, Ŝeig

N (f) satisfies

2NW Ŝeig
N (f) =

N−1∑
k=0

λkŜk(f)

=

N−1∑
k=0

λk

∣∣∣∣∣
N−1∑
n=0

sk[n]x[n]e−j2πfn

∣∣∣∣∣
2

=

N−1∑
k=0

λk
∣∣s∗kE∗fx∣∣2

= x∗EfSΛS∗E∗fx

= x∗EfBE∗fx.

This gives us a a formula for Ŝeig
N (f) which does not require

computing any of the Slepian tapers. Since B is a Toeplitz
matrix, it can be extended to a circulant matrix, which is
diagonalized by an FFT matrix. Using this fact, we can get an
alternate formula for Ŝeig

N (mN ) for all m ∈ [N ] as follows.
First we define a vector of sinc samples

b[`] =


sin[2πW`]

π`
` ∈ [N ],

0 ` = N,
sin[2πW (2N − `)]

π(2N − `)
` ∈ [2N ] \ [N + 1],

a zeropadding matrix

Z =

[
IN×N
0N×N

]
,

a length-2N FFT matrix defined by

F [m,n] = e−jπmn/N for m,n ∈ [2N ],

and a vector

y = F−1
(
b ◦ F |FZx|2

)
,

2Here, we have used the fact that
∑N−1
k=0 λk = trB = 2NW .

where we use the notation ◦ to be the elementwise product,
i.e., (p ◦ q)[`] = p[`]q[`], and | |2 to denote the elementwise
magnitude-squared, i.e., (|p|2)[`] = |p[`]|2.

With these definitions, we have Ŝeig
N (mN ) = 1

2NW y[2m] for
all m ∈ [N ]. The derivation of this fact is deferred to a
future publication. Computing y = F−1

(
b ◦ F |FZx|2

)
can

be done in O(N logN) operations via three length-2N FFTs
and a few pointwise multiplications of length-2N vectors.
Then, we can obtain Ŝeig

N (mN ) = 1
2NW y[2m] for m ∈ [N ]

by downsampling and scaling z.

B. Approximations for General Multitaper Spectral Estimates

Next, we present a lemma regarding approximations to
spectral estimates which use orthonormal tapers.

Lemma 1. Let x ∈ CN be a vector of N equispaced samples,
and let {vk}N−1

k=0 be any orthonormal set of tapers in CN . For
each k ∈ [N ], define a tapered spectral estimate

Vk(f) =

∣∣∣∣∣
N−1∑
n=0

vk[n]x[n]e−j2πfn

∣∣∣∣∣
2

.

Also, let {γk}N−1
k=0 and {γ̃k}N−1

k=0 be real coefficients, and then
define a multitaper spectral estimate V̂ (f) and an approxima-
tion Ṽ (f) by

V̂ (f) =

N−1∑
k=0

γkVk(f) and Ṽ (f) =

N−1∑
k=0

γ̃kVk(f).

Then, for any frequency f ∈ R, we have∣∣∣V̂ (f)− Ṽ (f)
∣∣∣ ≤ (max

k
|γk − γ̃k|

)
‖x‖22.

Proof. Let V =
[
v0 · · · vN−1

]
, and let Γ, Γ̃ ∈ RN×N ,

and Ef ∈ CN×N be diagonal matrices whose diagonal entries
are Γ[n, n] = γn, Γ̃[n, n] = γ̃n, and Ef [n, n] = ej2πfn for
n ∈ [N ]. Then, using a similar argument as used to show that
2NW Ŝeig

N (f) = x∗EfBE∗fx, one can show that

V̂ (f) = x∗EfV ΓV ∗E∗fx

and

Ṽ (f) = x∗EfV Γ̃V ∗E∗fx.

Since V is orthonormal, ‖V ‖ = ‖V ∗‖ = 1. Since Ef is
diagonal, and all the diagonal entries have modulus 1, ‖Ef‖ =
‖E∗f‖ = 1. Hence, for any f ∈ R, we can bound∣∣∣V̂ (f)− Ṽ (f)

∣∣∣ =
∣∣∣x∗EfV

(
Γ− Γ̃

)
V ∗E∗fx

∣∣∣
≤ ‖x‖2‖Ef‖‖V ‖‖Γ− Γ̃‖‖V ∗‖‖E∗f‖‖x‖2

=

(
max
k
|γk − γ̃k|

)
‖x‖22,

as desired.

2



C. Prolate matrix eigenvalue behavior

The eigenvalues λ0 > λ1 > · · · > λN−1 of B are all
strictly between 0 and 1, and they have a clustering behavior.
For fixed W ∈ (0, 1

2 ) and ε ∈ (0, 1
2 ) and large N , slightly less

than 2NW eigenvalues are between 1− ε and 1, slightly less
than N − 2NW eigenvalues are between 0 and ε, and very
few eigenvalues are between ε and 1 − ε. In [2], it is shown
that for fixed W ∈ (0, 1

2 ) and ε ∈ (0, 1
2 ),

# {k : ε < λk < 1− ε} ∼ 2

π2
logN log

(
1

ε
− 1

)
as N →∞. Also, for any N ∈ N, W ∈ (0, 1

2 ) and ε ∈ (0, 1
2 ),

# {k : ε < λk < 1− ε} ≤
(

8

π2
log(8N) + 12

)
log

(
15

ε

)
.

In the subsections that follow, we assume that for a given
N ∈ N and W ∈ (0, 1

2 ), the parameters K and ε ∈ (0, 1
2 ) are

chosen such that λK−1 ≥ 1
2 and λK ≤ 1− ε. This restriction

only forces K to be slightly less than 2NW . We then partition
the indices [N ] into four sets

I1 = {k ∈ [K] : λk ≥ 1− ε},
I2 = {k ∈ [K] : ε < λk < 1− ε},
I3 = {k ∈ [N ] \ [K] : ε < λk < 1− ε},
I4 = {k ∈ [N ] \ [K] : λk ≤ ε}.

From the above theory, we have that #(I2 ∪ I3) = #{k :
ε < λk < 1 − ε} = O(logN log 1

ε ). Hence, it is possible
to precompute the eigenvalues λk and DPSS tapers sk for all
k ∈ I2∪I3 in O(N log2N log 1

ε ) operations. In the following
subsections, we will assume that we have precomputed λk and
sk for all k ∈ I2 ∪ I3, but not for any k ∈ I1 ∪ I4.

III. FAST APPROXIMATIONS

A. Fast algorithm for approximating Ŝmt
K (f)

The unweighted multitaper spectral estimate Ŝmt
K (f) is given

by

Ŝmt
K (f) =

1

K

K−1∑
k=0

Ŝk(f) =
∑

k∈I1∪I2

1

K
Ŝk(f).

We then define an approximation by

S̃mt
K (f) :=

2NW

K
Ŝeig
N (f) +

∑
k∈I2

1− λk
K

Ŝk(f)−
∑
k∈I3

λk
K
Ŝk(f)

=

N−1∑
k=0

λk
K
Ŝk(f) +

∑
k∈I2

1− λk
K

Ŝk(f)−
∑
k∈I3

λk
K
Ŝk(f)

=
∑

k∈I1∪I4

λk
K
Ŝk(f) +

∑
k∈I2

1

K
Ŝk(f)

Thus, Ŝmt
K (f) and S̃mt

K (f) can be written as

Ŝmt
K (f) =

N−1∑
k=0

γmt
k Ŝk(f) and S̃mt

K (f) =

N−1∑
k=0

γ̃mt
k Ŝk(f)

where

γmt
k =

{
1
K k ∈ I1 ∪ I2,

0 k ∈ I3 ∪ I4,
and γ̃mt

k =


λk

K k ∈ I1 ∪ I4,
1
K k ∈ I2,

0 k ∈ I3.

We now consider gapmt
k := |γmt

k − γ̃mt
k |. For k ∈ I1, we have

λk ≥ 1− ε, and thus,

gapmt
k =

∣∣∣∣ 1

K
− λk
K

∣∣∣∣ =
1− λk
K

≤ ε

K
.

For k ∈ I2 ∪ I3 we have γmt
k = γ̃mt

k , i.e., gapmt
k = 0. For

k ∈ I4, we have λk ≤ ε, and thus,

gapmt
k =

∣∣∣∣0− λk
K

∣∣∣∣ =
λk
K
≤ ε

K
.

Hence, gapmt
k ≤

ε

K
for all k ∈ [N ], and thus by Lemma 1,

we have ∣∣∣Ŝmt
K (f)− S̃mt

K (f)
∣∣∣ ≤ ε

K
‖x‖22.

Finally, evaluating the approximation

S̃mt
K (f) :=

2NW

K
Ŝeig
N (f)+

∑
k∈I2

1− λk
K

Ŝk(f)−
∑
k∈I3

λk
K
Ŝk(f)

at the N grid frequencies requires evaluating Ŝeig
N (f) and

Ŝk(f) for all k ∈ I2∪I3 at the N grid frequencies. Evaluating
Ŝeig
N (f) at the grid frequencies takes O(N logN) operations,

as shown in Section II-A. For each k ∈ I2 ∪ I3, evaluating
Ŝk(f) at the grid frequencies takes O(N logN) operations.
Since #(I2 ∪ I3) = O(logN log 1

ε ), the total computation
required is O(N log2N log 1

ε ) operations.

B. Fast algorithm for approximating Ŝeig
K (f)

The eigenvalue weighted multitaper spectral estimate
Ŝeig
K (f) is given by:

Ŝeig
K (f) =

K−1∑
k=0

λkŜk(f)

K−1∑
k=0

λk

=
∑

k∈I1∪I2

λk
ΣK

Ŝk(f),

where

ΣK :=

K−1∑
k=0

λk =
∑
k∈I1

λk +
∑
k∈I2

λk.

We then define an approximation by

S̃eig
K (f) : =

2NW

Σ̃K
Ŝeig
N (f)− 1

Σ̃K

∑
k∈I3

λkŜk(f)

=
1

Σ̃K

N−1∑
k=0

λkŜk(f)− 1

Σ̃K

∑
k∈I3

λkŜk(f)

=
∑
k 6∈I3

λk

Σ̃K
Ŝk(f)

where

Σ̃K := K −
∑
k∈I2

(1− λk) =
∑
k∈I1

1 +
∑
k∈I2

λk.

3



Thus, Ŝeig
K (f) and S̃eig

K (f) can be written as

Ŝeig
K (f) =

N−1∑
k=0

γeig
k Ŝk(f) and S̃eig

K (f) =

N−1∑
k=0

γ̃eig
k Ŝk(f)

where

γeig
k =

{
λk

ΣK
k ∈ I1 ∪ I2,

0 k ∈ I3 ∪ I4,
and γ̃eig

k =

{
λk

Σ̃K
k 6∈ I3,

0 k ∈ I3.
.

To bound gapeig
k :=

∣∣∣γeig
k − γ̃

eig
k

∣∣∣, we first note that

0 ≤ Σ̃K − ΣK =
∑
k∈I1

(1− λk) ≤ ε#(I1) ≤ Kε,

and

Σ̃K ≥ ΣK =

K−1∑
k=0

λk ≥
K−1∑
k=0

λK−1 = KλK−1 ≥
K

2
.

For k ∈ I1 ∪ I2, we have 0 ≤ λk ≤ 1, and thus,

gapeig
k =

∣∣∣∣ λkΣK
− λk

Σ̃K

∣∣∣∣ =
λk(Σ̃K − ΣK)

Σ̃KΣK
≤ 1 ·Kε

(K2 )2
≤ 4ε

K
.

For k ∈ I3 we have γeig
k = γ̃eig

k = 0, i.e., gapeig
k = 0. For

k ∈ I4, we have λk ≤ ε, and thus,

gapeig
k =

∣∣∣∣0− λk

Σ̃K

∣∣∣∣ =
λk

Σ̃K
≤ ε

K
2

=
2ε

K
≤ 4ε

K
.

Hence, gapeig
k ≤

4ε

K
for all k ∈ [N ], and thus by Lemma 1,

we have ∣∣∣Ŝeig
K (f)− S̃eig

K (f)
∣∣∣ ≤ 4ε

K
‖x‖22.

Finally, evaluating the approximation

S̃eig
K (f) :=

2NW

Σ̃K
Ŝeig
N (f)− 1

Σ̃K

∑
k∈I3

λkŜk(f)

at the N grid frequencies can be done in O(N log2N log 1
ε )

operations in a similar manner as can be done for S̃mt
K (f).

IV. SIMULATIONS

To test our fast method for multitaper spectral estimation,
we first generate N = 220 samples of an ARMA(12, 8) pro-
cess. We then try the following methods of spectral estimation:

1) Thomson’s unweighted multitaper method with W =
3.6× 10−5 (2NW ≈ 75.5), and K = 63 tapers.

2) Our fast approximation to Thomson’s unweighted multi-
taper method with W = 2.7 × 10−3 (2NW ≈ 5662.3),
K = 5641 tapers, and an approximation parameter of
ε = 10−12.

Note that for both methods, the number of tapers K was
chosen such that λK−1 > 1 − 10−9 > λK , which severely
reduces the broadband bias of the tapered estimates. This
is necessary due to the high dynamic range of the true
spectrum. For the first method, the half-bandwidth parameter
W = 2.7×10−3 was chosen according to the optimal number

Fig. 1. Plots of the spectrum of the ARMA(12, 8) process, and the two
estimates of this spectrum.

of tapers suggested in [7]. For the second method, the half-
bandwidth parameter W = 3.6 × 10−5 was chosen so that
both methods run in a comparable amount of time.

A plot the exact power spectrum of the ARMA(12, 8)
process and the estimated spectra are shown in Figure 1.
The precomputation time, run time, and root-mean-squared-
logarithmic errors are shown in the table below. Both methods
run in approximately the same amount of time due to the
fact that our fast approximation only needed to compute
#(I2∪I3) = 56 Slepian tapers. However, the fast approxima-
tion has greater accuracy due to the fact that it approximates
a multitaper estimate with K = 5641 tapers.

Method Precomputation time Time RMSLE
1 28.15 s 2.989 s 0.5498 dB
2 25.33 s 2.932 s 0.1602 dB
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