ECE 4435A Op Amp Design Quiz 1

September 18, 2002

Professor Leach Name______ Instructions. Print your name in the space above. Place a box around your answers. Express each numerical answer as a decimal number. Honor Code Statement: I have neither given nor received help on this quiz. Initials: ______

- 1. It is given that $i_s = 2 \text{ mA}$, $R_1 = 5 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $R_3 = 3 \text{ k}\Omega$, and $R_4 = 2 \text{ k}\Omega$. (a) Solve for v_A , v_B , and v_o .
 - (b) Repeat part (a) with a 4 k Ω resistor connected between A and B.

2. Solve for v_o/v_i .

- 3. For the circuit below
 - (a) Solve for the expression for r_{in} .
 - (b) If $R_1 = 10 \text{ k}\Omega$, solve for R_2 and R_3 such that $v_o/v_i = -15$ and $r_{in} = \infty$.

ECE 4435A Op Amp Design Quiz 2

November 4, 2002

Professor Leach Name______ Instructions. Print your name in the space above. Place a box around your answers. Express each numerical answer as a decimal number. Honor Code Statement: I have neither given nor received help on this quiz. Initials: ______

- 4. For the op amp circuit shown
 - (a) Solve for the load current and put it into the form $i_L = Av_I + Bv_L$, where you must specify A and B as functions of R_1 through R_5 .
 - (b) What is the condition on the resistors in the circuit for i_L to be independent of v_L , i.e. the condition that the load sees a constant current source?
 - (c) What is the transconductance gain i_L/v_I if the circuit is a constant current source?

5. Solve for v_O as a function of v_1 and v_2 .

