ECE 4435A Op Amp Design Quiz 1

September 18, 2002

Professor Leach
Name
Instructions. Print your name in the space above. Place a box around your answers. Express each numerical answer as a decimal number. Honor Code Statement: I have neither given nor received help on this quiz. Initials: \qquad

1. It is given that $i_{s}=2 \mathrm{~mA}, R_{1}=5 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega, R_{3}=3 \mathrm{k} \Omega$, and $R_{4}=2 \mathrm{k} \Omega$.
(a) Solve for v_{A}, v_{B}, and v_{o}.
(b) Repeat part (a) with a $4 \mathrm{k} \Omega$ resistor connected between A and B .

2. Solve for v_{o} / v_{i}.

3. For the circuit below
(a) Solve for the expression for $r_{i n}$.
(b) If $R_{1}=10 \mathrm{k} \Omega$, solve for R_{2} and R_{3} such that $v_{o} / v_{i}=-15$ and $r_{i n}=\infty$.

ECE 4435A Op Amp Design Quiz 2

November 4, 2002

Professor Leach
Name
Instructions. Print your name in the space above. Place a box around your answers. Express each numerical answer as a decimal number. Honor Code Statement: I have neither given nor received help on this quiz. Initials: \qquad
4. For the op amp circuit shown
(a) Solve for the load current and put it into the form $i_{L}=A v_{I}+B v_{L}$, where you must specify A and B as functions of R_{1} through R_{5}.
(b) What is the condition on the resistors in the circuit for i_{L} to be independent of v_{L}, i.e. the condition that the load sees a constant current source?
(c) What is the transconductance gain i_{L} / v_{I} if the circuit is a constant current source?

5. Solve for v_{O} as a function of v_{1} and v_{2}.

